c#与matlab混合编程 调用机器学习工具箱 决策树

本文介绍了如何在C#中调用已使用Matlab训练好的决策树模型进行机器学习。首先在Matlab中训练并剪枝决策树,然后在C#中通过加载Matlab保存的模型文件,实现对新数据的调制类型识别。重点在于确保Matlab模型在C#环境中能正确加载为ClassificationTree类。
摘要由CSDN通过智能技术生成

首先是在 matlab 中训练模型,代码如下

clear all;
clc;

%加载训练  测试数据

y_valid = load('shuju/valid_data_label4.mat');
y_valid = y_valid.valid_data_label4;
x_valid = load('valid_data4.mat');
x_valid = x_valid.valid_data4;

x_train = load('train_data4.mat');
x_train = x_train.train_data4;
y_train = load('train_data_label4.mat');
y_train = y_train.train_data_label4;

%建立决策树 训练得到 模型:ctree

ctree = ClassificationTree.fit(x_train,y_train)

%剪枝

ctree = prune(ctree,'level',20);

%画图

view(ctree,'mode','graph');

%测试结果

    y_hat = predict(ctree,x_valid);
    acc_test = sum(y_hat == y_valid)/length(y_valid);
    disp(['测试准确度:' num2str(acc_test)])
    
    y_train_hat = predict(ctree,x_train);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值