Tensorflow深度学习算法原理与编程实战
换种方式生活
这个作者很懒,什么都没留下…
展开
-
加速运算
CPU、GPU、TPUTensorFlow 支持的设备包括CPU(一般是 x86 或 x64架构的 CPU ,也可以是手机端 ARM 架构的 CPU ,不过由于 ARM的CPU性能不是十分出众,所以一般不会在训练的过程中被采用)、GPU和TPU(Tensor Processing Unit,这是Google专门为大规模的深度学习计算而研发的特殊设备,目前没有公开发布)。在配置好GPU支持的Te...原创 2019-12-16 19:35:09 · 437 阅读 · 1 评论 -
TensorBoard可视化
TensorBoard简介TensorBoard是TensorFlow官方推出的可视化工具,并不需要额外的安装过程,在TensorFlow安装完成时, TensorBoard 会自动被安装。其界面基于Web,在TensorFlow程序运行过程中可以输出汇总了各种类型数据的日志文件,可视化 TensorFlow 程序的运行状态就是使用TensorBoard读取这些日志文件,解析数据并生成可视化的W...原创 2019-12-16 19:06:24 · 92 阅读 · 0 评论 -
模型持久化
实现模型持久化的目的在于可以使模型训练后的结果重复使用。这样做无疑节省了重复训练模型的时间,提高了编程工作的效率,因为当遇到稍大的神经网络往往要训练许多天之久 。通过代码实现train.Saver类是 TensorFlow提供的用于保存和还原一个神经网络模型的API,使用代码如下:import tensorflow as tf#声明两个变量并计算其加和a = tf.Variable(t...原创 2019-12-16 18:44:51 · 566 阅读 · 0 评论 -
数据读取--csv格式
自己制作一个data.csv文件 , 其中共有 30 条记录,每条记录由4个字段组成。使用TextLineReader类和decode_csv函数从csv读取数据。import tensorflow as tf#创建一个队列对输入文件列表进行维护filename_queue = tf.train.string_input_producer(["/mnt/downloads/tf/tf_b...原创 2019-10-30 17:23:09 · 1041 阅读 · 0 评论 -
数据读取--TFrecord格式
TensorFlow程序读取数据一 共有3种方法:( 1 )预加载数据:当数据量比较小时,通过在程序中定义常量或变量的方式来保存所有数据 。( 2 )供给数据( Feeding ) : 供给数据就是通过给run()函数输入feed_dict 参数的方式将数据注入到 placeholder中,再启动运算过程( 3 )从文件读取数据:这种读取数据的方法意味着在TensorFlow 图的起始,让...原创 2019-10-30 17:22:45 · 330 阅读 · 0 评论 -
深度强化学习
强化学习( Reinforcement Learning )与深度学习同属机器学习的范畴,是其中 一 个重要的分支,主要用来解决连续决策的问题。强化不像无监督学习那样完全没有学习目标,也不像监督学习那样有非常明确的目标(如图像分类问题中的label),强化学习的目标是不明确的,模型只会向着能够得到更多奖励的方向去学习。Q学习在强化学习中, Q学习( Q Learning )是一种学习 Acti...原创 2019-10-28 18:25:26 · 266 阅读 · 0 评论 -
循环神经网络
- 循环神经网络简介循环神经网络(Rerrent Neural Network, RNN )出现于20世纪80年代,其雏形见于美国物理学家 J.J.Hopfield 于 1982 年提出的可用作联想存储器的互联网络一Hopfield 神经网络模型。卷积神经网络擅长处理大小可变的图像,而循环神经网络则对可变长度的序列数据有较强的处理能力。随着循环神经网络在结构方面的进步和 GPU 硬件性能的迅猛...原创 2019-09-28 21:41:42 · 1940 阅读 · 0 评论 -
卷积神经网络——基本知识
这里写自定义目录标题简介卷积池化卷积神经网络的一般框架简介卷积神经网络和全连网络一样同属前馈神经网络。相对全连神经网络而言,卷积神经网络相对进步的地方是卷积层结构和池化层结构的引入,这两种层都是卷积神经网络重要的组成部分。卷积是一种特殊的线性运算,用来替代一般的矩阵乘法运算。卷积卷积运算中,第一个参数叫做输入,第二个参数叫核函数或卷积核,输出叫做特征映射或特征图。对于一个卷积运算,输入和卷...原创 2019-09-23 21:44:45 · 1287 阅读 · 0 评论 -
学习率的优化
学习率既不能过大, 也不能过小 。为了更好地设置学习率,我们可以逐步减小己经设置好的学习率。1.指数形式的衰减 TensorFlow提供了train.exponential_ deccy() 函数,可以对学习率进行指数形式的衰减。如果用 decayed_learning_rate代表每一轮优化时使用的学习率,learning_ rate 为事先预定义的初始学习 率, decay_rate为...原创 2019-09-03 22:41:24 · 773 阅读 · 0 评论 -
TensorFlow 提供的优化器
每一个 TensorFlow 提供的优化器都作为 一 个类而被放在了 .py 文件中, 在路径 tensorflow/python/training 下可以找到这些 . py 文件 。这些优化器类分别介绍如下。1. train.Optimizer()这是一个基本的优化器类,该类不常常被直接调用,而较多使用其子类,比如 AdagradOptimizer 、 GradientDescentOpti...原创 2019-09-03 21:16:29 · 358 阅读 · 0 评论 -
《Tensorflow深度学习算法原理与编程实战》——优化网络的方法
一般神经网络的训练过程大致分为两个阶段: 第一个阶段先通过前向传播算法计算得到预测值,并将预测值和真实值作比较,得出两者之间的差距; 第二个阶段,通过反向传播算法计算损失函数对每一个参数的梯度,再根据梯度和学习率使用梯度下降算法更新每一个参数。 应用了反向传播的前馈神经网络依然是前馈的。基于梯度的优化...原创 2019-08-22 22:47:53 · 599 阅读 · 0 评论 -
《Tensorflow深度学习算法原理与编程实战》——深度前馈神经网络
深度前馈神经网络(Deep Feedforward Neural Network),简称为前馈神经网络(Feedforward Neural Network),指的是具有前馈特征的神经网络模型。原创 2019-08-21 21:09:35 · 2206 阅读 · 1 评论 -
《Tensorflow深度学习算法原理与编程实战》——tensorflow编程策略
tensorflow中的计算过程可以表示为一个计算图(Computation Graph)或有向图(Direction Graph)。计算图中每一个运算操作视为一个节点(Node),每个节点可以有任意个输入和任意个输出。如果一个运算的输入取值自另一个运算的输出,那么称这两个运算存在依赖关系,存在依赖关系的两个节点通过边(Edge)相互连接。**张量(Tensor)**就是在边中流动(flow)的...原创 2019-08-08 23:13:17 · 2097 阅读 · 0 评论 -
ubuntu18.04下tensorflow环境配置
《Tensorflow深度学习算法原理与编程实战》——ubuntu18.04下tensorflow环境配置环境介绍使用自己笔记本进行学习,安装win10与ubuntu18.04双系统,一开始想安装ubuntu16.04,但是无线网卡驱动尝试了n种方法都没搞好,最后决定用ubuntu18.04自带wifi选项。lspci | grep -i nvidia查看显卡型号安装对应版本的驱动,尝试...原创 2019-07-31 22:56:24 · 469 阅读 · 0 评论 -
MNIST手写数字识别实现
MNIST数据集 MNIST是一个简单的手写体数字识别数据集,由70000张28×28像素的黑白图片组成(分辨率较小) 。其中的每一张图片都写有0~ 9中的一个数字,任务就是根据图片上的数字对这些图片进行10分类。 数据集官网地址为http://yann.lecun.com/exdb/mnist/,由以下四部分组成: train-images-idx3-ubyte.gz: train...原创 2019-09-07 18:18:14 · 842 阅读 · 0 评论