裁剪图像的黑边(图像拼接后的黑边去除)

参考链接:https://www.cnblogs.com/yumoye/p/10512540.html

累计多张图像拼接后,黑边会累计增加,为了去除图像拼接后的黑边,截取有用的区域,参考博客代码如下:

"""author:youngkun;date:20180608;function:裁剪照片的黑边"""
 
import cv2
import os
import datetime
 
def change_size(read_file):
    image=cv2.imread(read_file,1) #读取图片 image_name应该是变量
    img = cv2.medianBlur(image,5) #中值滤波,去除黑色边际中可能含有的噪声干扰
    b=cv2.threshold(img,15,255,cv2.THRESH_BINARY)          #调整裁剪效果
    binary_image=b[1]               #二值图--具有三通道
    binary_image=cv2.cvtColor(binary_image,cv2.COLOR_BGR2GRAY)
    print(binary_image.shape)       #改为单通道
 
    x=binary_image.shape[0]
    print("高度x=",x)
    y=binary_image.shape[1]
    print("宽度y=",y)
    edges_x=[]
    edges_y=[]
    for i in range(x):
        for j in range(y):
            if binary_image[i][j]==255:
             edges_x.append(i)
             edges_y.append(j)
 
    left=min(edges_x)               #左边界
    right=max(edges_x)              #右边界
    width=right-left                #宽度
    bottom=min(edges_y)             #底部
    top=max(edges_y)                #顶部
    height=top-bottom               #高度
 
    pre1_picture=image[left:left+width,bottom:bottom+height]        #图片截取
    return pre1_picture                                             #返回图片数据
 
source_path="./training_data/1/"                                    #图片来源路径
save_path="./out/"                                     #图片修改后的保存路径
 
if not os.path.exists(save_path):
    os.mkdir(save_path)
 
file_names=os.listdir(source_path)
 
starttime=datetime.datetime.now()
for i in range(len(file_names)):
    x=change_size(source_path + file_names[i])        #得到文件名
    cv2.imwrite(save_path+file_names[i],x)
    print("裁剪:",file_names[i])
    print("裁剪数量:",i)
    while(i==2600):
        break
print("裁剪完毕")
endtime = datetime.datetime.now()#记录结束时间
endtime = (endtime-starttime).seconds
print("裁剪总用时",endtime)

利用原始代码,修改文件路径可以跑通,但是耗时比较长,尺寸(17196,6155)的图片耗时102s,研究代码发现for循环的目的是提取白色像素点,可以用np.where优化,优化后速度提升明显,耗时4s,代码如下:

import cv2
import numpy as np
import datetime


def change_size(read_file):
    image = cv2.imread(read_file, 1)  # 读取图片 image_name应该是变量
    img = cv2.medianBlur(image, 5)  # 中值滤波,去除黑色边际中可能含有的噪声干扰
    b = cv2.threshold(img, 15, 255, cv2.THRESH_BINARY)  # 调整裁剪效果
    binary_image = b[1]  # 二值图--具有三通道
    binary_image = cv2.cvtColor(binary_image, cv2.COLOR_BGR2GRAY)
    print(binary_image.shape)  # 改为单通道

    indexes = np.where(binary_image == 255)  # 提取白色像素点的坐标

    left = min(indexes[0])  # 左边界
    right = max(indexes[0])  # 右边界
    width = right - left  # 宽度
    bottom = min(indexes[1])  # 底部
    top = max(indexes[1])  # 顶部
    height = top - bottom  # 高度

    pre1_picture = image[left:left + width, bottom:bottom + height]  # 图片截取
    return pre1_picture  # 返回图片数据


if __name__=='__main__':
    source_file = "/mnt/input.jpg"  # 原始图片
    save_path = "/mnt/out.jpg"  # 裁剪后图片

    starttime = datetime.datetime.now()
    x = change_size(source_file)
    cv2.imwrite(save_path, x)
    print("裁剪完毕")
    endtime = datetime.datetime.now()  # 记录结束时间
    endtime = (endtime - starttime).seconds
    print("裁剪总用时", endtime)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值