参考链接:https://www.cnblogs.com/yumoye/p/10512540.html
累计多张图像拼接后,黑边会累计增加,为了去除图像拼接后的黑边,截取有用的区域,参考博客代码如下:
"""author:youngkun;date:20180608;function:裁剪照片的黑边"""
import cv2
import os
import datetime
def change_size(read_file):
image=cv2.imread(read_file,1) #读取图片 image_name应该是变量
img = cv2.medianBlur(image,5) #中值滤波,去除黑色边际中可能含有的噪声干扰
b=cv2.threshold(img,15,255,cv2.THRESH_BINARY) #调整裁剪效果
binary_image=b[1] #二值图--具有三通道
binary_image=cv2.cvtColor(binary_image,cv2.COLOR_BGR2GRAY)
print(binary_image.shape) #改为单通道
x=binary_image.shape[0]
print("高度x=",x)
y=binary_image.shape[1]
print("宽度y=",y)
edges_x=[]
edges_y=[]
for i in range(x):
for j in range(y):
if binary_image[i][j]==255:
edges_x.append(i)
edges_y.append(j)
left=min(edges_x) #左边界
right=max(edges_x) #右边界
width=right-left #宽度
bottom=min(edges_y) #底部
top=max(edges_y) #顶部
height=top-bottom #高度
pre1_picture=image[left:left+width,bottom:bottom+height] #图片截取
return pre1_picture #返回图片数据
source_path="./training_data/1/" #图片来源路径
save_path="./out/" #图片修改后的保存路径
if not os.path.exists(save_path):
os.mkdir(save_path)
file_names=os.listdir(source_path)
starttime=datetime.datetime.now()
for i in range(len(file_names)):
x=change_size(source_path + file_names[i]) #得到文件名
cv2.imwrite(save_path+file_names[i],x)
print("裁剪:",file_names[i])
print("裁剪数量:",i)
while(i==2600):
break
print("裁剪完毕")
endtime = datetime.datetime.now()#记录结束时间
endtime = (endtime-starttime).seconds
print("裁剪总用时",endtime)
利用原始代码,修改文件路径可以跑通,但是耗时比较长,尺寸(17196,6155)的图片耗时102s,研究代码发现for循环的目的是提取白色像素点,可以用np.where优化,优化后速度提升明显,耗时4s,代码如下:
import cv2
import numpy as np
import datetime
def change_size(read_file):
image = cv2.imread(read_file, 1) # 读取图片 image_name应该是变量
img = cv2.medianBlur(image, 5) # 中值滤波,去除黑色边际中可能含有的噪声干扰
b = cv2.threshold(img, 15, 255, cv2.THRESH_BINARY) # 调整裁剪效果
binary_image = b[1] # 二值图--具有三通道
binary_image = cv2.cvtColor(binary_image, cv2.COLOR_BGR2GRAY)
print(binary_image.shape) # 改为单通道
indexes = np.where(binary_image == 255) # 提取白色像素点的坐标
left = min(indexes[0]) # 左边界
right = max(indexes[0]) # 右边界
width = right - left # 宽度
bottom = min(indexes[1]) # 底部
top = max(indexes[1]) # 顶部
height = top - bottom # 高度
pre1_picture = image[left:left + width, bottom:bottom + height] # 图片截取
return pre1_picture # 返回图片数据
if __name__=='__main__':
source_file = "/mnt/input.jpg" # 原始图片
save_path = "/mnt/out.jpg" # 裁剪后图片
starttime = datetime.datetime.now()
x = change_size(source_file)
cv2.imwrite(save_path, x)
print("裁剪完毕")
endtime = datetime.datetime.now() # 记录结束时间
endtime = (endtime - starttime).seconds
print("裁剪总用时", endtime)