求连通分量(无向图,邻接矩阵,BFS)

1、题目:


 Problem Description

设有一无向图,其顶点值为字符型并假设各值互不相等,采用邻接矩阵表示法存储表示。利BFS用算法求其各连通分量,并输出各连通分量中的顶点。

 Input

有多组测试数据,每组数据的第一行为两个整数n和e,表示n个顶点和e条边(0<n<20);第二行为其n个顶点的值,按输入顺序进行存储;后面有e行,表示e条边的信息,每条边信息占一行,包括边所依附的顶点下标i和j,数据之间用空格隔开。

 Output

按存储顺序的先后,输出各连通分量中的顶点,每组输出占若干行,每行最后均无空格,每两组数据之间有一空行,具体格式见样例。

 Sample Input

4 4
ABCD
0 1
0 3
1 2
1 3
4 3
ABCD
0 1
0 3
1 3

 Sample Output

1:A,B,D,C

1:A,B,D
2:C

 Author

hwt


2、参考代码:


#include <iostream>
#include <string.h>
using namespace std;

class MGraph{
private:
	int vertexNum,arcNum;
	char vertex[111];
	int edge[111][111];
public:
	int vis[111];
	MGraph(char* a,int n,int e);
	~MGraph(){}
	void BFS(int v);
};

MGraph::MGraph(char* a,int n,int e){
	vertexNum=n;
	arcNum=e;
	memset(edge,0,sizeof(edge));
	int i,j;
	for(i=0;i<n;i++)
		vertex[i]=a[i];
	while(e--){
		cin>>i>>j;
		edge[i][j]=edge[j][i]=1;
	}
}

void MGraph::BFS(int v){
	int front,rear,count=0;
	front=rear=-1;
	int Q[111];
	vis[v]=1;
	Q[++rear]=v;
	cout<<vertex[v];
	while(front!=rear){
		v=Q[++front];
		for(int j=0;j<vertexNum;j++){
			if(edge[v][j]==1 && !vis[j]){
				cout<<","<<vertex[j];
				vis[j]=1;
				Q[++rear]=j;
			}
		}
	}
}

int main()
{
	int n,e;
	bool flag=false;
	char a[111];
	while(cin>>n>>e){
		if(flag)
			cout<<endl;
		cin>>a;
		MGraph w(a,n,e);
		memset(w.vis,0,sizeof(w.vis));
		int x=1;
		for(int i=0;i<n;i++){
			if(w.vis[i]==0){
				cout<<x++<<":";
				w.BFS(i);
				cout<<endl;
			}
		}
		flag=true;
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值