零式机器学习笔记——Day7-11 k邻近法(k-NN)

学习目标

  1. 什么是k-NN
  2. k-NN如何工作的

步骤讲解

k-NN

k邻近法(k-NN)是最简单的分类算法,也可以用于回归计算。

原理

对给定对象进行分类时,需要满足三个关键条件:

  • 一组已经标记的对象

  • 对象间的距离

  • 最近对象统计数阈值k

首先计算所有已标记对象与待标记对象的距离,并记录最近的k个对象,待标记对象与k个对象中计数最多的分为同一类。

源代码

import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 

# Importing the dataset
dataset = pd.read_csv("Social_Network_Ads.csv")
x = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values
# Splitting the dataset into The training set and Test set
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.25, random_state = 0)
# Feature scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.transform(x_test)

# Using k-NN classifier
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors=5, metric='minkowski', p=2)
classifier.fit(x_train, y_train)

# Prediction
y_pred = classifier.predict(x_test)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)

笔记目录

返回目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值