《算法零基础100讲》之 第六十九讲:差分约束系统

第六十九讲:差分约束系统

内容概述

差分约束系统(Difference Constraint System)是指一组形如 ( x_i - x_j \leq b_k ) 的不等式组,其中 ( x_i ) 和 ( x_j ) 是变量,( b_k ) 是常数。差分约束系统可以通过图论中的最短路径算法来求解。

关键概念
  • 差分约束系统:一组形如 ( x_i - x_j \leq b_k ) 的不等式组。
  • 图论模型:将每个变量 ( x_i ) 表示为图中的一个顶点,每个不等式 ( x_i - x_j \leq b_k ) 表示一条从 ( j ) 到 ( i ) 的边,权重为 ( b_k )。
  • 最短路径算法:使用Bellman-Ford算法来检测负权回路并求解最短路径。
示例问题

给定一组差分约束不等式,求解这些不等式组的可行解。

示例问题

给定以下差分约束不等式组:

  1. ( x_1 - x_2 \leq 1 )
  2. ( x_2 - x_3 \leq 2 )
  3. ( x_3 - x_1 \leq -3 )
图论模型
  • 顶点:( x_1, x_2, x_3 )
  • 边:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路飞VS草帽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值