题意: 给一个图,给起点终点,S,T; 如果删除一个点,使得无法从S到T,则这个点事可删点,问有多少个可删点 ;
据说可以用最小割写,不过还是来个朴素的A题解法 ;
首先,我们先找到一条从S到T的路径,当然可以直接找最短路,至此我们可以知道,除了这条路上的其他点,都不是可删点了,因为就算你删除了那些点,也照样可以通过这条路到达T; 然后,可删点就是这条路上的某些点了;我们可以在这条路上从起点S可是搜;我们bfs的控制条件是;如果当前搜到的点不在这条路上,就进队,若在就补进队;
同事更新; 那么我们可以想到;当整个bfs结束后,必然是因为最后搜到一个点,这个点事在那条路上的,因为搜到的点在这条路上,不进队,所以导致队列空了,程序结束;
所以当bfs结束后,最后搜到的点就是可删点;因为搜到这个点就搜不下去了,也就是没路了,说明这个点是决定能否继续往后面通过的点,那么删除这个点,珍格格图断了,当然就无法到达T了,
#include<stdio.h>
#include<vector>
#include<iostream>
#include<queue>
using namespace std;
#define maxn 100001
#define maxm 300001
int Start,End,pre[maxn],vis[maxn],low[maxn],Top,head[maxn];;
struct edge
{
int y, next;
} e[maxm];
void insert(int x, int y)
{
e[Top].y=y;
e[Top].next = head[x];
head[x] = Top++;
}
void ini(int n)
{
Top=0;
for(int i=0;i<=n;i++)
{
vis[i]=low[i]=0;
head[i]=-1;
}
}
int Bfs1(int u) //找最短路
{
int w,p;
pre[u]=-1;
queue<int>q;
q.push(u);
vis[u]=1;
while(!q.empty())
{
u=q.front();
q.pop();
for (p = head[u]; p != -1; p = e[p].next)
{
w= e[p].y;
if(vis[w]==0)
{
q.push(w);
vis[w]=1;
pre[w]=u;
if(w==End)return 1;
}
}
}
return 0;
}
int Bfs2(int u) //搜可删点
{
int w,res=u,p;
queue<int>q;
q.push(u);
while(!q.empty())
{
u=q.front();
q.pop();
for (p = head[u]; p != -1; p = e[p].next)
{
w= e[p].y;
if(vis[w]==0)
{
vis[w]=1;
if(low[w]==0)q.push(w); //如果点不在最短路上,进队
else if(low[res]>low[w])res=w; //在最短路上,则更新res,
}
}
}
return res; //最终结束得到的可删点
}
int main()
{
int n,m,i,j,x,y;
while(scanf("%d%d",&n,&m)!=EOF)
{
ini(n);
for ( i = 0; i < m; ++i) {
int a, b;
scanf("%d%d", &a, &b);
insert(a, b);
}
scanf("%d%d",&Start,&End);
if(n==0||n==1)
{
printf("%d\n",n);
continue;
}
if(!Bfs1(Start)) //图是不联通的,则左右点都可删
{
printf("%d\n",n);
continue;
}
else
{
i=End;
int top=1;
while(pre[i]!=-1) //记录找的的最短路;
{
low[i]=top++;
i=pre[i];
}
low[Start]=top;
}
int res=1;
for(i=0;i<n;i++)vis[i]=0;
i=Start;
vis[Start]=1;
while(i!=End) //从起点开始搜,没BFS2一次,得到一个可删点
{
i=Bfs2(i);
res++;
}
printf("%d\n",res);
}
return 0;
}