uva681

本文介绍了一种求凸包的经典算法——Graham扫描法。该算法首先确定最底部的点作为起始点,并通过极角排序对其他点进行排序。然后使用栈结构逐点检查并维护凸包边界。代码中详细展示了如何实现这一算法,包括点结构定义、距离计算、叉乘判断等功能。
摘要由CSDN通过智能技术生成

求凸包的水题,这题输入很有特点。注意: 要求凸包第一个点是最下方的点。

#include <queue>
#include <stack>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <limits.h>
#include <string.h>
#include <string>
#include <algorithm>
using namespace std;
const int MAX = 120000;
const double eps = 1e-6;
const double pi=3.141592654;
bool dy(double x,double y)	{	return x > y + eps;}	// x > y 
bool xy(double x,double y)	{	return x < y - eps;}	// x < y 
bool dyd(double x,double y)	{ 	return x > y - eps;}	// x >= y 
bool xyd(double x,double y)	{	return x < y + eps;} 	// x <= y 
bool dd(double x,double y) 	{	return fabs( x - y ) < eps;}  // x == y
struct point{	double x,y;		};
point c[MAX];
double disp2p(point a,point b) 
{
	return sqrt( ( a.x - b.x ) * ( a.x - b.x ) + ( a.y - b.y ) * ( a.y - b.y ) );
}
double crossProduct(point a,point b,point c)//向量 ac 在 ab 的方向 
{
	return (c.x - a.x)*(b.y - a.y) - (b.x - a.x)*(c.y - a.y);
}
bool cmp(point a,point b)  // 排序   
{  
    double len = crossProduct(c[0],a,b);  
    if( dd(len,0.0) )  
        return xy(disp2p(c[0],a),disp2p(c[0],b));  
    return xy(len,0.0);  
}  
int stk[MAX];
int top;	
double sum = 0.0;
void Graham(int n)
{
    int tmp = 0;  
    for(int i=1; i<n; i++)//
    	if( xy(c[i].y,c[tmp].y) || dd(c[i].y,c[tmp].y) && xy(c[i].x,c[tmp].x) )
    		tmp = i;
    swap(c[0],c[tmp]);
    sort(c+1,c+n,cmp);
    stk[0] = 0; stk[1] = 1;
    top = 1;
	for(int i=2; i<n; i++)
	{
		while( xyd( crossProduct(c[stk[top]],c[stk[top-1]],c[i]), 0.0 ) && top >= 1 )
			top--;
		stk[++top] = i;
	}
	//cout<<"top "<<top<<endl;	
}
int main()
{
	int n,t;
	int flag=1;
	while(cin>>t && t )
	{
          while(t--)
          {
              cin>>n;
     		  for(int i=0;i<n;i++)
    		  cin>>c[i].x>>c[i].y;
              Graham(n);
              if(flag)
              {
                      cout<<t+1<<endl;
                      flag=0;
              }
              cout<<top+2<<endl;
              for(int i=0; i<=top; i++)
              printf("%.0lf %.0lf\n",c[stk[i]].x,c[stk[i]].y);
               printf("%.0lf %.0lf\n",c[stk[0]].x,c[stk[0]].y);
              if(t!=0)
              {
                  cin>>n;
                  cout<<n<<endl;
              }
          }
	}
return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值