DSA和ECDSA算法

8 篇文章 1 订阅
6 篇文章 0 订阅


关键词:


DSA:Digital Signature Algorithm (DSA)

ECDSA:The Elliptic Curve Digital Signature Algorithm (ECDSA)

DSS:Digital Signature Standard (DSS)

NIST:(U.S. National) Institute of Standards and Technology

FIPS:(U.S. Government) Federal Information Processing Standard

离散对数问题:discrete logarithm problem

欧拉函数:Φ(n)

欧拉定理


主要内容:

  • 密钥生成。key generation
  • 签名生成。signature generation
  • 签名验证。signature veri cation


1、DSA


  • 密钥生成

1)、选择一个素数 q ,使得 2159 < q< 2160

2)、选择一个 1024-bit 的素数 p,属性为 q | p - 1。

          (DSS 强制要求 p 是一个素数,使得 2511+64t < q< 2512+64t,当0 ≤ t ≤ 8。如果 t = 8,则 p 是一个 1024-bit 的素数。)

3)、选择一个元素 h ,h介于[ 1, p-1 ],然后计算 g = h(p- 1)/q mod p。重复直到 g ≠ 1。

4)、选择一个随机整数 x 在 [ 1,q - 1 ]。

5)、计算 y= gx mod p 

6)、公钥是:(p,q,g,y);私钥是 x 。


对应openssl源码:

static int dsa_builtin_keygen(DSA *dsa)
{
    int ok = 0;
    BN_CTX *ctx = NULL;
    BIGNUM *pub_key = NULL, *priv_key = NULL;

    if ((ctx = BN_CTX_new()) == NULL)
        goto err;

    if (dsa->priv_key == NULL) {
        if ((priv_key = BN_secure_new()) == NULL)
            goto err;
    } else
        priv_key = dsa->priv_key;

    do
        if (!BN_rand_range(priv_key, dsa->q))
            goto err;
    while (BN_is_zero(priv_key)) ;

    if (dsa->pub_key == NULL) {
        if ((pub_key = BN_new()) == NULL)
            goto err;
    } else
        pub_key = dsa->pub_key;

    {
        BIGNUM *prk = BN_new();

        if (prk == NULL)
            goto err;
        BN_with_flags(prk, priv_key, BN_FLG_CONSTTIME);

        if (!BN_mod_exp(pub_key, dsa->g, prk, dsa->p, ctx)) {
            BN_free(prk);
            goto err;
        }
        /* We MUST free prk before any further use of priv_key */
        BN_free(prk);
    }

    dsa->priv_key = priv_key;
    dsa->pub_key = pub_key;
    ok = 1;

 err:
    if (pub_key != dsa->pub_key)
        BN_free(pub_key);
    if (priv_key != dsa->priv_key)
        BN_free(priv_key);
    BN_CTX_free(ctx);
    return (ok);
}


  • 签名生成

1)、选择一个随机整数 k ,k 介于[ 1,q - 1 ]。

2)、计算 r = (gk mod p) mod q。

3)、计算 k-1 mod q。

4)、计算 s = k-1 {h(m) + xr} mod q,h 是 安全哈希算法(SHA-1)。

5)、如果 s = 0,则转到 步骤 1)。

6)、签名信息 m 是 r 和 s 的组合(r,s)。


对应openssl中源码:

static DSA_SIG *dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa)
{
    BIGNUM *kinv = NULL;
    BIGNUM *m;
    BIGNUM *xr;
    BN_CTX *ctx = NULL;
    int reason = ERR_R_BN_LIB;
    DSA_SIG *ret = NULL;
    int rv = 0;

    m = BN_new();
    xr = BN_new();
    if (m == NULL || xr == NULL)
        goto err;

    if (!dsa->p || !dsa->q || !dsa->g) {
        reason = DSA_R_MISSING_PARAMETERS;
        goto err;
    }

    ret = DSA_SIG_new();
    if (ret == NULL)
        goto err;
    ret->r = BN_new();
    ret->s = BN_new();
    if (ret->r == NULL || ret->s == NULL)
        goto err;

    ctx = BN_CTX_new();
    if (ctx == NULL)
        goto err;
 redo:
    if (!dsa_sign_setup(dsa, ctx, &kinv, &ret->r, dgst, dlen))
        goto err;

    if (dlen > BN_num_bytes(dsa->q))
        /*
         * if the digest length is greater than the size of q use the
         * BN_num_bits(dsa->q) leftmost bits of the digest, see fips 186-3,
         * 4.2
         */
        dlen = BN_num_bytes(dsa->q);
    if (BN_bin2bn(dgst, dlen, m) == NULL)
        goto err;

    /* Compute  s = inv(k) (m + xr) mod q */
    if (!BN_mod_mul(xr, dsa->priv_key, ret->r, dsa->q, ctx))
        goto err;               /* s = xr */
    if (!BN_add(ret->s, xr, m))
        goto err;               /* s = m + xr */
    if (BN_cmp(ret->s, dsa->q) > 0)
        if (!BN_sub(ret->s, ret->s, dsa->q))
            goto err;
    if (!BN_mod_mul(ret->s, ret->s, kinv, dsa->q, ctx))
        goto err;

    /*
     * Redo if r or s is zero as required by FIPS 186-3: this is very
     * unlikely.
     */
    if (BN_is_zero(ret->r) || BN_is_zero(ret->s))
        goto redo;

    rv = 1;

 err:
    if (rv == 0) {
        DSAerr(DSA_F_DSA_DO_SIGN, reason);
        DSA_SIG_free(ret);
        ret = NULL;
    }
    BN_CTX_free(ctx);
    BN_clear_free(m);
    BN_clear_free(xr);
    BN_clear_free(kinv);
    return ret;
}


  • 签名验证

1)、获取公钥(p,q,g,y)的真实副本。

2)、验证 r 和 s 是否为整数,且介于区间[ 1,q - 1 ]。

3)、计算 w = s-1 mod q 以及 h(m)。

4)、计算 u1 = h(m)w mod q 以及 u2 = rw mod q。

5)、计算 v = (gu1 yu2 mod p) mod q

6)、当且仅当 v = r,签名验证正确。


对应openssl源码:

static int dsa_do_verify(const unsigned char *dgst, int dgst_len,
                         DSA_SIG *sig, DSA *dsa)
{
    BN_CTX *ctx;
    BIGNUM *u1, *u2, *t1;
    BN_MONT_CTX *mont = NULL;
    const BIGNUM *r, *s;
    int ret = -1, i;
    if (!dsa->p || !dsa->q || !dsa->g) {
        DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_MISSING_PARAMETERS);
        return -1;
    }

    i = BN_num_bits(dsa->q);
    /* fips 186-3 allows only different sizes for q */
    if (i != 160 && i != 224 && i != 256) {
        DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_BAD_Q_VALUE);
        return -1;
    }

    if (BN_num_bits(dsa->p) > OPENSSL_DSA_MAX_MODULUS_BITS) {
        DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_MODULUS_TOO_LARGE);
        return -1;
    }
    u1 = BN_new();
    u2 = BN_new();
    t1 = BN_new();
    ctx = BN_CTX_new();
    if (u1 == NULL || u2 == NULL || t1 == NULL || ctx == NULL)
        goto err;

    DSA_SIG_get0(sig, &r, &s);

    if (BN_is_zero(r) || BN_is_negative(r) ||
        BN_ucmp(r, dsa->q) >= 0) {
        ret = 0;
        goto err;
    }
    if (BN_is_zero(s) || BN_is_negative(s) ||
        BN_ucmp(s, dsa->q) >= 0) {
        ret = 0;
        goto err;
    }

    /*
     * Calculate W = inv(S) mod Q save W in u2
     */
    if ((BN_mod_inverse(u2, s, dsa->q, ctx)) == NULL)
        goto err;

    /* save M in u1 */
    if (dgst_len > (i >> 3))
        /*
         * if the digest length is greater than the size of q use the
         * BN_num_bits(dsa->q) leftmost bits of the digest, see fips 186-3,
         * 4.2
         */
        dgst_len = (i >> 3);
    if (BN_bin2bn(dgst, dgst_len, u1) == NULL)
        goto err;

    /* u1 = M * w mod q */
    if (!BN_mod_mul(u1, u1, u2, dsa->q, ctx))
        goto err;

    /* u2 = r * w mod q */
    if (!BN_mod_mul(u2, r, u2, dsa->q, ctx))
        goto err;

    if (dsa->flags & DSA_FLAG_CACHE_MONT_P) {
        mont = BN_MONT_CTX_set_locked(&dsa->method_mont_p,
                                      dsa->lock, dsa->p, ctx);
        if (!mont)
            goto err;
    }

    if (dsa->meth->dsa_mod_exp != NULL) {
        if (!dsa->meth->dsa_mod_exp(dsa, t1, dsa->g, u1, dsa->pub_key, u2,
                                    dsa->p, ctx, mont))
            goto err;
    } else {
        if (!BN_mod_exp2_mont(t1, dsa->g, u1, dsa->pub_key, u2, dsa->p, ctx,
                              mont))
            goto err;
    }

    /* let u1 = u1 mod q */
    if (!BN_mod(u1, t1, dsa->q, ctx))
        goto err;

    /*
     * V is now in u1.  If the signature is correct, it will be equal to R.
     */
    ret = (BN_ucmp(u1, r) == 0);

 err:
    if (ret < 0)
        DSAerr(DSA_F_DSA_DO_VERIFY, ERR_R_BN_LIB);
    BN_CTX_free(ctx);
    BN_free(u1);
    BN_free(u2);
    BN_free(t1);
    return (ret);
}



2、ECDSA



  • 密钥生成

1)、选择一个定义在 Zp 上的椭圆曲线 E 。E(Zp) 中点的个数应该被一个大素数 n 整除。

2)、选择一个点 P ∈ E(Zp),(n 阶)。

3)、选择一个统计学上独特和不可预测的整数 d ,介于 [ 1,n - 1 ]。

4)、计算 Q = dP。

5)、公钥是:(E,P,n,Q);私钥是 d 。



  • 签名生成

1)、选择一个统计学上独特和不可预测的整数 k ,介于 [ 1,n - 1 ]。

2)、计算 kP = (x1, y1) 以及 r = x1 mod n。(这里被认为是一个整数,例如从二进制表示转换)。如果 r = 0,则转到步骤 1)。

3)、计算 k-1 mod n。

4)、计算 s = k-1 { h(m) + dr } mod n,h 是 安全哈希算法(SHA-1)。

5)、如果 s = 0,则转到 步骤 1)。

6)、签名信息 m 是 r 和 s 的组合(r,s)。




  • 签名验证

1)、获取公钥(E,P,n,Q)的真实副本。

2)、验证 r 和 s 是否为整数,且介于区间[ 1,n - 1 ]。

3)、计算 w = s-1 mod n 以及 h(m)。

4)、计算 u1 = h(m)w mod n 以及 u2 = rw mod n。

5)、计算u1P + u2Q = (x0, y0) 以及 v = x0 mod n。

6)、当且仅当 v = r,签名验证正确。





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值