数论
The_Hungry_Brain
现在不经意做的一件事,会在未来某个不可预期的时刻回馈自己。越努力,越幸运。
展开
-
求最大公因子(辗转相除法原理)(扩展的欧几里德算法)
while(n != 0) { r = m % n; m = n; n = r; } printf("Their greatest common divisor is %d.\n", m);都知道在求最大公因子(最大公约数)的时候,使用欧几里得算法(辗转相除法)。下面来研究这个算法怎么推论出来的。首先看原创 2017-01-18 15:05:59 · 5275 阅读 · 0 评论 -
ECC加密算法
关键词:ECC:Elliptic Curve Cryptography (ECC)基于离散对数的椭圆曲线密码系统提供与RSA类似的安全性,但是具有相对较短的密钥大小。GF(p) 上的椭圆曲线素数 p > 3,并且 a,b ∈ GF(p),在 GF(p) 上使得4a原创 2017-03-17 15:17:13 · 14913 阅读 · 0 评论 -
DSA和ECDSA算法
关键词:DSA:Digital Signature Algorithm (DSA)ECDSA:The Elliptic Curve Digital Signature Algorithm (ECDSA)DSS:Digital Signature Standard (DSS)NIST:(U.S. National) Institute of Standards and Tec原创 2017-03-16 15:48:07 · 6617 阅读 · 0 评论 -
欧拉函数
欧拉函数 Φ(n) 指:小于n且与n互素的正整数的个数。习惯上, Φ(1) = 1显然,对素数p Φ(p) = p - 1那么对于n = pq Φ(n) = Φ(pq) = Φ(p) × Φ(q) =(p - 1) ×原创 2017-03-16 16:37:02 · 376 阅读 · 0 评论 -
费马定理
费马定理: 若 p 是素数,a 是正整数且不能被 p 整除,则: a p-1 ≡ 1 (mod p)另外有:原创 2017-03-16 16:53:59 · 447 阅读 · 0 评论 -
欧拉定理
欧拉定理: 对任意互素的 a 和 n ,有: aΦ(n)≡ 1 (mod n)原创 2017-03-16 16:46:36 · 637 阅读 · 0 评论 -
本原根和离散对数
1、本原根根据欧拉定理aΦ(n)≡ 1 (mod n),我们知道,aΦ(n) (mod n) 会生成一个循环序列集,该序列是周期性的。其周期长是使 am≡ 1 (mod n) 成立的最小正幂 m。当这个最小正幂 m = Φ(n)的时候(简单说就是序列的最小周期为Φ(n),即 n - 1),我们称 a 是 n 的本原根。2、离散对数对任何整数 b原创 2017-03-16 20:17:42 · 9817 阅读 · 0 评论