matplotlib画图实例-day1

本文详细介绍了使用Matplotlib库绘制不同类型图表的方法,包括如何设置图片大小、保存图片、调整坐标轴刻度,以及如何添加描述信息和特殊标记,通过实例展示了温度变化趋势图和年龄与女友数量关系图的绘制过程。

matplotlib主要用于根据数据画各种图表

官网:https://matplotlib.org/gallery/index.html

例1:画一天中每个两个小时温度变化趋势图

#!/usr/bin/evn python3
from matplotlib import pyplot as plt

x=range(2,26,2)#生成2,4,6..20,24十二个时间点的数组
y=[15,13,14,17,20,25,26,26,24,22,18,15]
plt.plot(x,y)
plt.show()

注意事项:

  1. 不能把文件名写做:matplotlib.py因为模块里有同名的文件会被覆盖,从而报错:cannot import name 'pyplot' from 'matplotlib'
  2. 文件夹内不能有:csv.py之类的文件名,将会报未知的错误,具体和你自己写的csv.py文件内容有关,因为它会引用csv模块,会覆盖掉csv模块内同名文件
  3. 2的报错截图: 

运行结果:

但是目前存在以下几个问题:

  1. 设置图片大小(想要一个高清无码大图)
  2. 保存到本地
  3. 描述信息,比如x轴和y轴表示什么,这个图表示什么
  4. 调整x或者y的刻度的间距
  5. #!/usr/bin/evn python3
    from matplotlib import pyplot as plt
    
    #设置图大小figsize,分辨率等dpi,figure(图形,图标)
    pic=plt.figure(figsize=(20,8),dpi=80)
    
    x=range(2,26,2)
    y=[15,13,14,17,20,25,26,26,24,22,18,15]
    
    #绘图
    plt.plot(x,y)
    
    #指定x轴刻度按x的列表来画
    ##plt.xticks(x)
    ##指定从2开始每隔一标一个刻度,不包含25
    ##plt.xticks(range(2,25))
    ##每隔0.5标一个刻度
    xtick=[i/2 for i in range(4,49)]
    plt.xticks(xtick)
    ##列表间隔取值[::2]隔一个取一个
    #plt.xticks(xtick[::2])
    
    ##y刻度指定(只要取y列表最大/小值,步进为1即可,最大温度太靠边,所以max+1)
    plt.yticks(range(min(y),max(y)+1))
    
    #保存图片,可为矢量图,放大不失真格式名为.svg
    #保存要放在plot(x,y)绘图之后,show()之前,否则是空白图
    ##plt.savefig("./si.svg")
    
    #展示
    plt.show()
    
    
    
    
    ##但是目前存在以下几个问题:
    ##设置图片大小(想要一个高清无码大图)
    ##保存到本地
    ##描述信息,比如x轴和y轴表示什么,这个图表示什么
    ##调整x或者y的刻度的间距
    

    调整尺寸、xy刻度后:

  6. 线条的样式(比如颜色,透明度等)
  7. 标记出特殊的点(比如告诉别人最高点和最低点在哪里)
  8. 给图片添加一个水印(防伪,防止盗用)

 修饰后的温度表:

# coding=utf-8
from matplotlib import pyplot as plt
import random
import matplotlib
from matplotlib import font_manager

#windws和linux设置字体的放
# font = {'family' : 'MicroSoft YaHei',
#         'weight': 'bold',
#         'size': 'larger'}
# matplotlib.rc("font",**font)
# matplotlib.rc("font",family='MicroSoft YaHei',weight="bold")

#另外一种设置字体的方式,微软雅黑
my_font = font_manager.FontProperties(fname="C:\Windows\Fonts\msyh.ttf")

x = range(0,120)
y = [random.randint(20,35) for i in range(120)]

plt.figure(figsize=(20,8),dpi=80)

plt.plot(x,y)

#调整x轴的刻度
_xtick_labels = ["10点{}分".format(i) for i in range(60)]
_xtick_labels += ["11点{}分".format(i) for i in range(60)]
#取步长,数字和字符串一一对应,数据的长度一样
plt.xticks(list(x)[::3],_xtick_labels[::3],rotation=45,fontproperties=my_font) #rotaion旋转的度数

#添加描述信息
plt.xlabel("时间",fontproperties=my_font)
plt.ylabel("温度 单位(℃)",fontproperties=my_font)
plt.title("10点到12点每分钟的气温变化情况",fontproperties=my_font)

plt.show()

结果:


年纪和女友数量关系

# coding=utf-8
from matplotlib import pyplot as plt
from matplotlib import font_manager

my_font = font_manager.FontProperties(fname="C:\Windows\Fonts\msyh.ttf")

y = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1]
x = range(11,31)

#设置图形大小
plt.figure(figsize=(20,8),dpi=80)

plt.plot(x,y)

#设置x轴刻度
_xtick_labels = ["{}岁".format(i) for i in x]
plt.xticks(x,_xtick_labels,fontproperties=my_font)
plt.yticks(range(0,9))

#绘制网格,alpha表示透明度,即网格清晰度
plt.grid(alpha=0.1)

#展示
plt.show()


 

绘多条线方法:

 

# coding=utf-8
from matplotlib import pyplot as plt
from matplotlib import font_manager

my_font = font_manager.FontProperties(fname="C:\Windows\Fonts\msyh.ttf")

y_1 = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1]
y_2 = [1,0,3,1,2,2,3,3,2,1 ,2,1,1,1,1,1,1,1,1,1]

x = range(11,31)

#设置图形大小
plt.figure(figsize=(20,8),dpi=80)

plt.plot(x,y_1,label="自己",color="#F08080")
plt.plot(x,y_2,label="同桌",color="#DB7093",linestyle="--")

#设置x轴刻度
_xtick_labels = ["{}岁".format(i) for i in x]
plt.xticks(x,_xtick_labels,fontproperties=my_font)
# plt.yticks(range(0,9))

#绘制网格
plt.grid(alpha=0.4,linestyle=':')

#添加图例
plt.legend(prop=my_font,loc="upper left")

#展示
plt.show()

结果:


图例:

更多图例参考:https://matplotlib.org/gallery/index.html


总结:

提供了基于BP(Back Propagation)神经网络结合PID(比例-积分-微分)控制策略的Simulink仿真模型。该模型旨在实现对杨艺所著论文《基于S函数的BP神经网络PID控制器及Simulink仿真》中的理论进行实践验证。在Matlab 2016b环境下开发,经过测试,确保能够正常运行,适合学习和研究神经网络在控制系统中的应用。 特点 集成BP神经网络:模型中集成了BP神经网络用于提升PID控制器的性能,使之能更好地适应复杂控制环境。 PID控制优化:利用神经网络的自学习能力,对传统的PID控制算法进行了智能调整,提高控制精度和稳定性。 S函数应用:展示了如何在Simulink中通过S函数嵌入MATLAB代码,实现BP神经网络的定制化逻辑。 兼容性说明:虽然开发于Matlab 2016b,但理论上兼容后续版本,可能会需要调整少量配置以适配不同版本的Matlab。 使用指南 环境要求:确保你的电脑上安装有Matlab 2016b或更高版本。 模型加载: 下载本仓库到本地。 在Matlab中打开.slx文件。 运行仿真: 调整模型参数前,请先熟悉各模块功能和输入输出设置。 运行整个模型,观察控制效果。 参数调整: 用户可以自由调节神经网络的层数、节点数以及PID控制器的参数,探索不同的控制性能。 学习和修改: 通过阅读模型中的注释和查阅相关文献,加深对BP神经网络与PID控制结合的理解。 如需修改S函数内的MATLAB代码,建议有一定的MATLAB编程基础。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值