matplotlib主要用于根据数据画各种图表
官网:https://matplotlib.org/gallery/index.html
例1:画一天中每个两个小时温度变化趋势图
#!/usr/bin/evn python3
from matplotlib import pyplot as plt
x=range(2,26,2)#生成2,4,6..20,24十二个时间点的数组
y=[15,13,14,17,20,25,26,26,24,22,18,15]
plt.plot(x,y)
plt.show()
注意事项:
- 不能把文件名写做:matplotlib.py因为模块里有同名的文件会被覆盖,从而报错:cannot import name 'pyplot' from 'matplotlib'
- 文件夹内不能有:csv.py之类的文件名,将会报未知的错误,具体和你自己写的csv.py文件内容有关,因为它会引用csv模块,会覆盖掉csv模块内同名文件
- 2的报错截图:
运行结果:

但是目前存在以下几个问题:
- 设置图片大小(想要一个高清无码大图)
- 保存到本地
- 描述信息,比如x轴和y轴表示什么,这个图表示什么
- 调整x或者y的刻度的间距
-
#!/usr/bin/evn python3 from matplotlib import pyplot as plt #设置图大小figsize,分辨率等dpi,figure(图形,图标) pic=plt.figure(figsize=(20,8),dpi=80) x=range(2,26,2) y=[15,13,14,17,20,25,26,26,24,22,18,15] #绘图 plt.plot(x,y) #指定x轴刻度按x的列表来画 ##plt.xticks(x) ##指定从2开始每隔一标一个刻度,不包含25 ##plt.xticks(range(2,25)) ##每隔0.5标一个刻度 xtick=[i/2 for i in range(4,49)] plt.xticks(xtick) ##列表间隔取值[::2]隔一个取一个 #plt.xticks(xtick[::2]) ##y刻度指定(只要取y列表最大/小值,步进为1即可,最大温度太靠边,所以max+1) plt.yticks(range(min(y),max(y)+1)) #保存图片,可为矢量图,放大不失真格式名为.svg #保存要放在plot(x,y)绘图之后,show()之前,否则是空白图 ##plt.savefig("./si.svg") #展示 plt.show() ##但是目前存在以下几个问题: ##设置图片大小(想要一个高清无码大图) ##保存到本地 ##描述信息,比如x轴和y轴表示什么,这个图表示什么 ##调整x或者y的刻度的间距调整尺寸、xy刻度后:
- 线条的样式(比如颜色,透明度等)
- 标记出特殊的点(比如告诉别人最高点和最低点在哪里)
- 给图片添加一个水印(防伪,防止盗用)
修饰后的温度表:
# coding=utf-8
from matplotlib import pyplot as plt
import random
import matplotlib
from matplotlib import font_manager
#windws和linux设置字体的放
# font = {'family' : 'MicroSoft YaHei',
# 'weight': 'bold',
# 'size': 'larger'}
# matplotlib.rc("font",**font)
# matplotlib.rc("font",family='MicroSoft YaHei',weight="bold")
#另外一种设置字体的方式,微软雅黑
my_font = font_manager.FontProperties(fname="C:\Windows\Fonts\msyh.ttf")
x = range(0,120)
y = [random.randint(20,35) for i in range(120)]
plt.figure(figsize=(20,8),dpi=80)
plt.plot(x,y)
#调整x轴的刻度
_xtick_labels = ["10点{}分".format(i) for i in range(60)]
_xtick_labels += ["11点{}分".format(i) for i in range(60)]
#取步长,数字和字符串一一对应,数据的长度一样
plt.xticks(list(x)[::3],_xtick_labels[::3],rotation=45,fontproperties=my_font) #rotaion旋转的度数
#添加描述信息
plt.xlabel("时间",fontproperties=my_font)
plt.ylabel("温度 单位(℃)",fontproperties=my_font)
plt.title("10点到12点每分钟的气温变化情况",fontproperties=my_font)
plt.show()
结果:

年纪和女友数量关系
# coding=utf-8
from matplotlib import pyplot as plt
from matplotlib import font_manager
my_font = font_manager.FontProperties(fname="C:\Windows\Fonts\msyh.ttf")
y = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1]
x = range(11,31)
#设置图形大小
plt.figure(figsize=(20,8),dpi=80)
plt.plot(x,y)
#设置x轴刻度
_xtick_labels = ["{}岁".format(i) for i in x]
plt.xticks(x,_xtick_labels,fontproperties=my_font)
plt.yticks(range(0,9))
#绘制网格,alpha表示透明度,即网格清晰度
plt.grid(alpha=0.1)
#展示
plt.show()

绘多条线方法:
# coding=utf-8
from matplotlib import pyplot as plt
from matplotlib import font_manager
my_font = font_manager.FontProperties(fname="C:\Windows\Fonts\msyh.ttf")
y_1 = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1]
y_2 = [1,0,3,1,2,2,3,3,2,1 ,2,1,1,1,1,1,1,1,1,1]
x = range(11,31)
#设置图形大小
plt.figure(figsize=(20,8),dpi=80)
plt.plot(x,y_1,label="自己",color="#F08080")
plt.plot(x,y_2,label="同桌",color="#DB7093",linestyle="--")
#设置x轴刻度
_xtick_labels = ["{}岁".format(i) for i in x]
plt.xticks(x,_xtick_labels,fontproperties=my_font)
# plt.yticks(range(0,9))
#绘制网格
plt.grid(alpha=0.4,linestyle=':')
#添加图例
plt.legend(prop=my_font,loc="upper left")
#展示
plt.show()
结果:

图例:

更多图例参考:https://matplotlib.org/gallery/index.html
总结:

本文详细介绍了使用Matplotlib库绘制不同类型图表的方法,包括如何设置图片大小、保存图片、调整坐标轴刻度,以及如何添加描述信息和特殊标记,通过实例展示了温度变化趋势图和年龄与女友数量关系图的绘制过程。
175

被折叠的 条评论
为什么被折叠?



