python迭代器、生成器、yield和xrange

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u010138758/article/details/56291013

1,迭代器:

支持next和__iter__方法的类,

其中next需要抛出StopIteration异常或返回迭代值,

__iter__需要返回迭代器自己,

也可以实现send函数,但要保证send函数调用next。

class MyIterator(object):
    def __init__(self, step):
       self.step = step 
    def next(self):
        """Returns the next element."""
        if self.step == 0:
            raise StopIteration # 不抛出这个异常,for循环就不能捕获而已,那么for循环不能停止
        self.step -= 1          # 没有return 就返回None
        return self.step
    def send(self,data):
        return self.next()
    def __iter__(self):
        return self # Returns the iterator itself

for el in MyIterator(4):
    print el

2,xrange:

xrange比迭代器高一个档次。a = xrange(5)返回一个xrange实例对象。

xrange实例对象只支持__iter__方法,不支持next。

xrange实例对象的__iter__方法返回一个迭代器。

所以迭代器是一次性用品,而xrange可以一直返回初始状态一样的迭代器,可以重复使用。

for循环,首先调用对象的__iter__方法得到迭代器,然后调用迭代器的next方法。

a = xrange(5) # xrange实例对象
b = a.__iter__() # 迭代器对象
c = a.__iter__() # 迭代器对象,xrange实例对象可以多次返回相同初始状态的迭代器
print list(b)
print list(b) # 为空,迭代器只能用一次
print a[2],a[0] # xrange实例对象还支持切片来索引数据
print list(a)
print list(a) # 多次使用

3,yield和生成器:

yield:使用协程进行用户态上下文切换的技术。

生成器:使用yield技术,返回支持迭代器的next、__iter__和send接口的对象。

生成器是一直执行代码,直到遇到yeild,就返回结果值和接受输入值,

可以有多个yeild,不一定非得是循环,

只要没有yeild可以执行时,就抛出stopiterantion。

for只不过是有处理stopiterantion异常的代码而已。

a.next()和a.send(None) 作用是一样的,但第一次调用生成器时,请一定使用next()语句或是send(None)。

4,简单的例子:

from collections import Iterable
isinstance('abc', Iterable) # str是否可迭代
isinstance(123, Iterable) # 整数是否可迭代

L = [x * x for x in range(10)] # 列表解析式
print L
g = (x * x for x in range(10)) # 返回一个生成器
print g

def fib(max):
    '斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易'
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
for i in fib(20):
    print i

from itertools import groupby
def compress(data): 
    return (  (len(list(group)), name) for name, group in groupby(data) )   # 返回一个生成器
def decompress(data):
    return (car * size for size, car in data) # 返回一个生成器
list(compress('get uuuuuuuuuuuuuuuuuup'))
compressed = compress('get uuuuuuuuuuuuuuuuuup')
''.join(decompress(compressed))

5,两种方法实现计数器:闭包和生成器:

import numpy as np
import pandas as pd

key_small = ['one','two','one','two','one']
df_small = pd.DataFrame(np.random.randn(5,3),index=['joe','steve','wes','jim','travis'],columns=['a','b','c'])
gb_small = df_small.groupby(key_small)

def f_wrapper():
    '闭包计数器'
    count = [0]
    def f(obj):
        count[0] += 1
        print '\nSTART',count[0],'\n',obj,'\nEND',count[0],'\n'
    return f
f = f_wrapper()
gb_small.agg(f)

print '-----------------------------------------------------------'
def f_counter():
    '生成器计数器'
    count = 0
    while True:
        a = yield count
        count += 1
        if count > 100:
            break
counter = f_counter() # '记住:当函数被调用时,他们返回一个生成器对象,这个对象支持迭代器接口。一定要调用,才能生成' 
def f(obj):
    count = counter.next()
    print '\nSTART',count,'\n',obj,'\nEND',count,'\n'            
gb_small.agg(f)

print '-----------------------------------------------------------'
import itertools
counter = itertools.count()
def f(obj):
    count = counter.next()
    print '\nSTART',count,'\n',obj,'\nEND',count,'\n'            
gb_small.agg(f)



(如果有什么不对的地方,欢迎大家留言指正)

展开阅读全文

没有更多推荐了,返回首页