知识点:乘法逆元,逆元的求法,二元一次方程求通解,a的n次方求余数
一,乘法逆元
乘法逆元的概念类似于倒数( ax=1,a−1=x ),不过是在取余数的情况下的倒数。
如果 (a×x)%p=1 ,则称x是a模p的逆元。另一种记法: ax=1( mod p) ,即等式两边去膜 p 运算。显然
没有逆元我们可以很容易计算,模p的加减乘运算,但是不知道除法运算,如下所示:令,a=xp+a%p,b=yp+b%p−−−−−−−−−−−−−−−−−−−−−−−那么,a+b=(x+y)p+a%p+b%p那么,a−b=(x−y)p+a%p−b%p那么,a×b=xyp2+(x+y)p+a%p×b%p−−−−−−−−−−−−−−−−−−−−−−−所以加法,(a+b)%p=((a%p)+(b%p))%p即,a+b=(a%p)+(b%p) ( mod p)−−−−−−−−−−−−−−−−−−−−−−−所以减法,(a−b)%p=((a%p)−(b%p))%p即,a−b=(a%p)−(b%p) ( mod p)−−−−−−−−−−−−−−−−−−−−−−−所以乘法,(a×b)%p=((a%p)×(b%p))%p即,a×b=(a%p)×(b%p) ( mod p)其中,x和y都是整数。
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5685
逆元的作用:已知 F%p和a%p 的值,求 (Fa)%p (我们不知道 F和a 的值,且 F%a=0 )。
如果已知a模p的乘法逆元为b,即(ab)%p=1那么,[Fa×(ab)]%p=[(Fa)%p×(ab)%p]%p=(Fa)%p因为,[Fa×(ab)]%p=[F×b]%p=[(F%p)×(b%p)]%p所以问题转变为求(b%p)即可
a 模
模 p 运算中,乘以
a×b=a×a−1=1 ( mod p)[Fa]%p=[F×(