乘法逆元、扩展欧几里得算法、二元一次方程、a的n次方取余

知识点:乘法逆元,逆元的求法,二元一次方程求通解,a的n次方求余数

一,乘法逆元


乘法逆元的概念类似于倒数( ax=1,a1=x ),不过是在取余数的情况下的倒数。
如果 (a×x)%p=1 ,则称x是a模p的逆元。另一种记法: ax=1( mod p) ,即等式两边去膜 p 运算。显然 x 有无限多个(如果有)。


p,a=xp+a%p,b=yp+b%pa+b=(x+y)p+a%p+b%pab=(xy)p+a%pb%pa×b=xyp2+(x+y)p+a%p×b%p(a+b)%p=((a%p)+(b%p))%pa+b=(a%p)+(b%p)  ( mod p)(ab)%p=((a%p)(b%p))%pab=(a%p)(b%p)  ( mod p)(a×b)%p=((a%p)×(b%p))%pa×b=(a%p)×(b%p)  ( mod p)xy

题目:http://acm.hdu.edu.cn/showproblem.php?pid=5685
逆元的作用:已知 F%pa%p 的值,求 (Fa)%p (我们不知道 Fa 的值,且 F%a=0 )。


apb(ab)%p=1[Fa×(ab)]%p=[(Fa)%p×(ab)%p]%p=(Fa)%p[Fa×(ab)]%p=[F×b]%p=[(F%p)×(b%p)]%p(b%p)


a p 的乘法逆元 b ,相当于模 p 运算中的 a1
p 运算中,乘以 b 相当于除以 a ,即乘以 a1

a×b=a×a1=1 ( mod p)[Fa]%p=[F×(
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值