这是今年GDKOI的一题:有一棵树,开始时所有结点的值都是0。有多个操作,每个操作有两种:
1.对某个点增加w,设dis(i,j)为点i到点j的最短距离,那么某个结点增加w时,对于任意一个结点j,它的值会增加w + dis(i,j)。
2.询问某点的值。
w可以忽略,因为整棵树都要加上w,只要记下所有w的和就可以了,输出答案时再加上。这题的突破口就是只需要求一个点的值,这就取决于其他发生变化的点对该点的影响。这里先结合一个样例,说明一些变量:
如图:点2,5,7,8被修改过(忽略了w)。
dis(i,j):点i到点j的最短距离。
lca(i,j):点i和点j的最近公共祖先。
dep(i):点i到根结点的距离,dep(6)= 2,dep(5)= 3。
cnt(i):以i为根的子树中的点,被修改过的次数,cnt(3)= 1,cnt(2)= 3。
deps(i):以i为根的子树中的被修改过的点的dep和,deps(2) = dep(2)+ dep(5)+ dep(7) = 1 + 3 + 3 = 7。
首先,要求任意两点i,j的距离,用dis(i,j)来表示是不好的,因为这没有内在的关系。这个可以表示成dep(i)+ dep(j)- 2 * dep(lca(i,j))。画个图就知道了。
如样例,有一个询问,询问3的值,那么它等于:
dep(3)* cnt(3) + deps(3) - 2 * dep(3)* cnt(3)
+dep(3)* (cnt(2)- cnt(3)) + (deps(2)- deps(3)) - 2 * dep(2)*(cnt(2)- cnt(3))
+dep(3)* (cnt(1)- cnt(2)) + (deps(1)- deps(2)) - 2 * dep(1)*(cnt(1)- cnt(2))
可以发现,有很多值是可以约去的,还有dep(2)= dep(3)- 1,dep(1)= dep(3)- 2,化简得:
dep(3) * cnt(1) + deps(1) - 2 * (cnt(3) + cnt(2))。
再可以由此推到普遍:
询问点u:dep(u) * cnt(1) + deps(1) - 2 * (cnt(u) + cnt(u的父亲) + cnt(u的父亲的父亲) + … + cnt(根的儿子))。注意不要加到根。
如此看来,我们需要的只是求cnt的和。这个可以用树链剖分来统计。
对于这些改一些,问一些的题目,不要局限于维护答案的值,可以通过维护其他的信息,以便于求答案。
贴个代码:
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
inline int getInt()
{
int res = 0;
char ch;
for (ch = '#'; ch < '0' || ch > '9'; ch = getchar());
for (; ch >= '0' && ch <= '9'; ch = getchar())
res = res * 10 + (int) ch - 48;
return res;
}
const int N = 100007;
int n;
int from[N], to[N << 1], next[N << 1], nedge;
void Insert(int a, int b)
{
to[nedge] = b;
next[nedge] = from[a];
from[a] = nedge ++;
}
void Init()
{
n = getInt();
memset(from, -1, sizeof(from));
nedge = 0;
for (int i = 0; i + 1 < n; i ++)
{
int a = getInt() - 1, b = getInt() - 1;
Insert(a, b);
Insert(b, a);
}
}
int Q[N];
int father[N], size[N], dep[N];
int npath, top[N], len[N], belong[N], idx[N];
void Split()
{
int lo = 0, hi = 0;
npath = 0;
Q[0] = 0;
father[0] = -1;
dep[0] = 0;
while (lo <= hi)
{
int u = Q[lo ++];
for (int e = from[u]; e != -1; e = next[e])
{
int v = to[e];
if (v != father[u])
{
Q[++ hi] = v;
father[v] = u;
dep[v] = dep[u] + 1;
}
}
}
for (int i = n - 1; i >= 0; i --)
{
int u = Q[i], p = -1;
size[u] = 1;
for (int e = from[u]; e != -1; e = next[e])
{
int v = to[e];
if (v != father[u])
{
size[u] += size[v];
if (p == -1 || size[v] > size[p])
p = v;
}
}
if (p == -1)
{
belong[u] = npath;
top[npath] = u;
idx[u] = 0;
len[npath ++] = 1;
}
else
{
int x = belong[p];
top[x] = u;
idx[u] = len[x] ++;
belong[u] = x;
}
}
}
int nnode;
struct Node
{
Node *lch, *rch;
int lo, hi;
ll sum, val;
inline int mi()
{
return (lo + hi) >> 1;
}
inline int size()
{
return hi - lo;
}
}node[N << 1], *tree[N];
void Build(Node *p, int lo, int hi)
{
p -> lo = lo;
p -> hi = hi;
p -> sum = p -> val = 0LL;
if (lo + 1 == hi)
p -> lch = p -> rch = NULL;
else
{
int mi = p -> mi();
p -> lch = &node[nnode ++];
p -> rch = &node[nnode ++];
Build(p -> lch, lo, mi);
Build(p -> rch, mi, hi);
}
}
inline void Down(Node *p)
{
p -> lch -> val += p -> val;
p -> rch -> val += p -> val;
p -> lch -> sum += p -> lch -> size() * p -> val;
p -> rch -> sum += p -> rch -> size() * p -> val;
p -> val = 0LL;
}
void Modify(Node *p, int le, int ri)
{
if (le <= p -> lo && ri >= p -> hi)
{
p -> val ++;
p -> sum += p -> size();
}
else
{
if (p -> val) Down(p);
int mi = p -> mi();
if (le < mi) Modify(p -> lch, le, ri);
if (ri > mi) Modify(p -> rch, le, ri);
p -> sum = p -> lch -> sum + p -> rch -> sum;
}
}
ll Ask(Node *p, int le, int ri)
{
if (le <= p -> lo && ri >= p -> hi)
return p -> sum;
else
{
if (p -> val) Down(p);
int mi = p -> mi();
ll ret = 0LL;
if (le < mi) ret += Ask(p -> lch, le, ri);
if (ri > mi) ret += Ask(p -> rch, le, ri);
return ret;
}
}
void Prepare()
{
nnode = 0;
for (int i = 0; i < npath; i ++)
{
tree[i] = &node[nnode ++];
Build(tree[i], 0, len[i]);
}
}
ll Find(int a, bool isask)
{
int x = belong[a];
ll ret = 0LL;
while (x != belong[0])
{
if (isask) ret += Ask(tree[x], idx[a], len[x]);
else Modify(tree[x], idx[a], len[x]);
a = father[top[x]];
x = belong[a];
}
if (a != 0)
if (isask) ret += Ask(tree[x], idx[a], idx[0]);
else Modify(tree[x], idx[a], len[x]);
return ret;
}
void Solve()
{
ll w = 0LL, cnt = 0LL;
for (int T = getInt(); T; T --)
if (getInt() == 0)
{
int u = getInt() - 1;
Find(u, false);
w += getInt();
w += (ll) dep[u];
cnt ++;
}
else
{
int u = getInt() - 1;
ll res = - 2 * Find(u, true);
res += w + cnt * dep[u];
printf("%I64d\n", res);
}
}
int main()
{
freopen("mmmfunc.in", "r", stdin);
freopen("mmmfunc.out", "w", stdout);
for (int T = getInt(); T; T --)
{
Init();
Split();
Prepare();
Solve();
}
return 0;
}