鲲鹏望舒

激情青年

eclipse + pyDev 中配置TensorFlow

eclipse +pyDev 中配置TensorFlow 1. 获取使用anaconda 安装的tensorflow环境的位置: 寻找自己安装的conda下的environments.txt文件 本人的在:C:\Users\spfhy.conda\environments.txt文件 ...

2018-03-01 23:34:35

阅读数 1831

评论数 1

git学习记录

git 学## git介绍1. 创建版本库2. 回退版本2.1 git reset2.2 git reflog3. 工作区和暂存区4.管理修改5.撤销修改6.删除文件7.远程仓库7.1 添加远程库7.2 从远程库克隆 git 学习参考lainxuefeng 1. 创建版本库 git init...

2018-12-09 21:38:19

阅读数 41

评论数 0

python操作c's'v及xls(excel)文件

1. 操作csv,使用python的csv模块 操作如下数据表csv格式 # -*- coding: utf-8 -*- """ Created on Sun May 20 13:04:27 2018 @author: spfhy &...

2018-05-21 00:05:24

阅读数 193

评论数 0

MNIST的卷积神经网络(CNN)

1MNIST网络结构及算法推导 2.基于tensorflow的实现 参考:https://blog.csdn.net/zgzczzw/article/details/79897956

2018-05-06 15:35:47

阅读数 509

评论数 0

tensorflow中的池化函数解析

1.池化原理 2. tensorflow中的池化函数 2.1 tf.nn.max_pool (1)函数功能描述: ax pooling是CNN当中的最大值池化操作 (2)函数原型: tf.nn.max_pool(value, ksize, strides, padding,...

2018-05-05 18:20:01

阅读数 468

评论数 0

tensorflow中激活函数详解

1.激活函数原理 2. 函数解析 2.1 tf.nn.relu (1)函数功能描述: (2)函数原型: (3)函数参数介绍: (4)函数使用示例: 2.1 tf.nn.sigmoid (1)函数功能描述: (2)函数原型: (3)函数参数介绍: (4)函数使用...

2018-05-05 18:14:24

阅读数 425

评论数 0

tensorflow中的卷积函数详解

1. 卷积的原理 2. temsorflow中的卷积函数 2.1 tf.nn.conv2d (1)函数原型 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) (2)参数介绍 ...

2018-05-05 17:31:45

阅读数 743

评论数 0

windos下使用tensorboard

1. 使用官方提供的MINST案例代码学习tesorboard的使用 from __future__ import absolute_import from __future__ import division from __future__ import print_function imp...

2018-05-03 23:12:28

阅读数 124

评论数 0

tensorflow基础知识----常用API总结

1. session tf.InteractiveSession():它能让你在运行图的时候,插入一些计算图,这些计算图是由某些操作(operations)构成的。这对于工作在交互式环境中的人们来说非常便利,比如使用IPython。 # 进入一个交互式 TensorFlow 会话. i...

2018-04-27 22:41:14

阅读数 254

评论数 0

tensorflow中的优化器

梯度下降优化算法 1. 1批量梯度下降法BGD   批量梯度下降法(Batch Gradient Descent,简称BGD)是梯度下降法最原始的形式,它的具体思路是在更新每一参数时都使用所有的样本来进行更新.    优点:全局最优解;易于并行实现; 缺点:当样本数目很多时,训练过...

2018-04-25 23:36:04

阅读数 242

评论数 0

tensorflow的基本运行方式--demo程序

1. tensorflow的运行流程如下 加载数据及定义超参数 构建网络 训练模型 评估模型和进行预测 2. tensorflow demo实现 demo如下:优化目标为:y=x2−0.5y=x2−0.5y = x^2 - 0.5 # -*- coding: utf-8 -*- &...

2018-04-18 22:42:52

阅读数 555

评论数 0

记录在学习过程中遇到的各路博客大牛

  今天,突然想开2篇博文,一篇用于记录自我学习,博文撰写中参考的各位大牛。原因有三:第一,便于后续进一步深入学习大牛的博文做个记录,防止后续想学的时候右找不到了链接了;第二,更为进一步全面研究大牛,鞭策自己,向大牛学习做积累;第三,记录大牛,以表示尊重与感谢;          —-2018...

2018-04-05 08:58:37

阅读数 68

评论数 0

神经网络算法推演---------神经网络中的反向传播算法公式推导及迭代演示

神经网络算法推演——神经网络中反向传播算法代码实现 1. 算法背景 如下图来自charlotte77的博文 看完charlotte77大神的博文,终于弄明白了神经网络中的前向传播及反向传播算法,自己也搜索各种资料,文档,总结了其算法推导的过程,再加上本篇文章,跟着charlotte77大...

2018-04-03 23:30:26

阅读数 419

评论数 2

神经网络算法推演----------:反向传播算法 Backpropagation Algorithm

反向神经网络(Backpropagation neural network)   继续分享给大家反向神经网络的数学过程推导,以便更好的理解神经网络的梯度下降算法工作过程,原文请参考=====>>>>&...

2018-03-20 23:54:33

阅读数 269

评论数 0

神经网络算法推演-------前馈神经网络(feedforward neural network )

前馈神经网络(feedforward neural network ) 学习神经网络的公式推导时,看到一篇很好的文章,所以就搬到了自己的博客,重新编辑了下,也算是自我学习并分享给大家,查看原文请点击===>>>&g...

2018-03-19 23:52:38

阅读数 9423

评论数 0

神经网络中的卷积

神经网络中的卷积 1.卷积的物理含义 卷积其实就是为冲击函数诞生的。“冲击函数”是狄拉克为了解决一些瞬间作用的物理现象而提出的符号。 卷积是“信号与系统”中论述系统对输入信号的响应而提出的。 卷积在信号处理机制中用途广泛,其中函数f可看做信号的发生,函数g可看做对信号响应,两者的卷...

2018-03-15 00:12:59

阅读数 92

评论数 0

交叉熵(Cross entropy)代价函数及其在机器学习中的应用

1. 背景概念理解 交叉熵与熵相对,如同协方差与方差。 现有关于样本集的2个概率分布p和q,其中p为真实分布,q非真实分布。 1.1 熵(entropy) 熵的本质是香农信息量(log1p)(log1p)(log\frac{1}{p} )的期望: H(p)=−∑i=1np(xi)lo...

2018-03-10 00:28:57

阅读数 460

评论数 0

tensorflow学习-------激活函数(activation function)

1. 激活函数 2.激活函数的分类: 2.1非线性激活函数 2.1.1 sigmoid函数 2.1.2 tanh函数 2.1.3 函数曲线绘制代码 2.2 连续但不是处处可微的函数: 2.2.1relu函数 2.2.2 函数曲线绘制代码 2.3随机化正则函数 drop函数 3....

2018-03-07 00:10:36

阅读数 549

评论数 0

(Batch Normalization)批标准化算法理解

批标准化 1.概念 2.方法 3.优缺点 4.示例 批标准化 1.概念 batch normalization,就是“批规范化”,即为了克服神经网络层数加深,收敛速度变慢,常常导致梯度消失(vanishing gradient problem)或梯度爆炸(gradient...

2018-03-05 22:29:03

阅读数 3741

评论数 0

tensorflow之变量作用域与变量共享(name_scope,variable_scope,get_variable,Variable)

tensorflow之变量作用域与变量共享(name_scope,variable_scope,get_variable,Variable) 1. tf. get_variable() 与 tf.Variable()的区别 tf. get_variable() :在创建变量时会查名字,如果给...

2018-03-04 23:05:55

阅读数 386

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭