机器学习
文章平均质量分 94
岳飞传
细节之中自有天地,整洁成就卓越代码
展开
-
斯坦福大学公开课 :Andrew Ng 机器学习课堂笔记之第一节(机器学习的动机与应用)
第一节:机器学习的动机与应用准备系统的学习以下机器学习的理论基础,找来机器学习大牛Andrew Ng的课程来啃,Mark一下,哈哈。 坚持记以下课堂笔记。。。。 :::::::::上海杨浦区佳木斯路星巴克一 课程内容简介第一节主要是课程综述,机器学习的定义,学习算法的应用,课程安排等等机器学习的动机与应用、Logistic类原创 2018-02-10 14:21:20 · 492 阅读 · 0 评论 -
机器学习基本概念知识汇
目录目录背景机器学习基本概念机器学习方法监督学习无监督学习半监督式学习强化学习机器学习中分类与聚类的本质区别分类聚类分类与聚类的比较机器学习算法分类回归算法基于实例的算法决策树学习贝叶斯方法基于核的算法聚类算法降低维度算法关联规则学习集成算法人工神经网络机器学习算法比较机器学习算法应用光学字符识别基本概念基本思想基本识别...原创 2018-02-13 11:30:45 · 13911 阅读 · 1 评论 -
神经网络中的卷积
神经网络中的卷积1.卷积的物理含义卷积其实就是为冲击函数诞生的。“冲击函数”是狄拉克为了解决一些瞬间作用的物理现象而提出的符号。 卷积是“信号与系统”中论述系统对输入信号的响应而提出的。卷积在信号处理机制中用途广泛,其中函数f可看做信号的发生,函数g可看做对信号响应,两者的卷积可看作在t时间过去产生的信号经过处理后的叠加;信号处理中如何出现卷积的?假设B是一个系统,其t时...原创 2018-03-15 00:12:59 · 691 阅读 · 0 评论 -
交叉熵(Cross entropy)代价函数及其在机器学习中的应用
1. 背景概念理解交叉熵与熵相对,如同协方差与方差。 现有关于样本集的2个概率分布p和q,其中p为真实分布,q非真实分布。1.1 熵(entropy)熵的本质是香农信息量(log1p)(log1p)(log\frac{1}{p} )的期望: H(p)=−∑i=1np(xi)logp(xi)H(p)=−∑i=1np(xi)logp(xi)H(p)=-\sum_{i=1}^n p...原创 2018-03-10 00:28:57 · 1461 阅读 · 0 评论 -
神经网络算法推演-------前馈神经网络(feedforward neural network )
前馈神经网络(feedforward neural network )学习神经网络的公式推导时,看到一篇很好的文章,所以就搬到了自己的博客,重新编辑了下,也算是自我学习并分享给大家,查看原文请点击===>>>>>1.1概述以监督学习为例,假设我们有训练样本集 (x(i),y(i))(x(i),y(i))\textstyle (x(^ i),y(^ i)...原创 2018-03-19 23:52:38 · 38621 阅读 · 0 评论 -
神经网络算法推演----------:反向传播算法 Backpropagation Algorithm
反向神经网络(Backpropagation neural network) 继续分享给大家反向神经网络的数学过程推导,以便更好的理解神经网络的梯度下降算法工作过程,原文请参考=====>>>>>>2.1 代价函数的定义假设我们有一个固定样本集 {(x(1),y(1)),…,(x(m),y(m))}{(x(1),y(1)),…,(x(m),y(m)...原创 2018-03-20 23:54:33 · 1072 阅读 · 0 评论 -
神经网络算法推演---------神经网络中的反向传播算法公式推导及迭代演示
神经网络算法推演——神经网络中反向传播算法代码实现1. 算法背景如下图来自charlotte77的博文 看完charlotte77大神的博文,终于弄明白了神经网络中的前向传播及反向传播算法,自己也搜索各种资料,文档,总结了其算法推导的过程,再加上本篇文章,跟着charlotte77大神,以示例推演+代码实现,以进一步理解神经网络的梯度下降算法。神经网络算法推演——-前馈神经网络...原创 2018-04-03 23:30:26 · 1679 阅读 · 2 评论