对某些随机试验,我们只对样本空间 C 子集 C1 中的元素感兴趣,这就意味着样本空间只要是子集 C1 就够了,接下来问题就是如何在 C1 这个新样本空间上定义概率集合函数。
定义在样本空间
C
上的概率集合函数是
P(C)
,
C1
是
C
的子集且满足
P(C1)>0
。我们现在考虑随机试验的结果只是
C1
中的元素;这时候我们取
C1
为样本空间。令
C2
是
C
的另一个子集,那么相对于新的样本空间
C1
,我们如何定义事件
C2
的概率呢?一旦定义了,我们就称这个概率为事件
C2
相对于事件
C1
的条件概率;或者更简洁一点,给定
C1
后
C2
的条件概率,这样的概率用符号
P(C2|C1)
表示。现在我们回到产生这个符号的问题,因为现在
C1
是样本空间,我们关心的
C2
的元素也得是
C1
的元素,即
C1∩C2
的元素,这样的话我们可以用下面的方式来定义
P(C2|C1)
:
进一步,从相对频率的角度讲,为了保持一致性,我们需要将事件
C1∩C2,C1
相对于空间
C1
的概率之比等于这些事件相对于空间
C
的概率之比;即
上面的三个关系式可导出
当 p(C1)>0 时,上面的关系式可以看成给定事件 C1,C2 的条件概率。进一步我们有
- P(C2|C1)≥0
- P(C2∪C3∪⋯|C1)=P(C2|C1)+P(C3|C1)+⋯ ,假设 C2,C3,… 是两两互斥的集合。
- P(C1|C1)=1
性质(1)(3)很显然;性质(2)的证明读者可以自己尝试一下。这些都是概率集合函数必须满足的条件, P(C2|C1) 是定义在 C1 子集上的一个概率集合函数,可以称为相对于假设 C1 的条件概率集合函数;或者给定 C1 的条件概率集合函数。注意概率集合函数只有在 P(C1)>0 的时候才有定义。
例1:
从52张牌中一次性的随机抽5张牌,事件
C1
表示五张牌中至少有四张是同种花色,事件
C2
表示五张牌同种花色,那么在事件
C1
的前提下,事件
C2
的条件概率是
根据条件概率集合函数的定义,我们可以看出
这个关系常被称为概率的乘法法则,有时候对于某些随机试验,可以假设 P(C1),P(C2|C1) 是已知的,那么 P(C1∩C2) 可以在这个假设下计算出来,为此考虑下面的例2,例3。
例2:
一个瓶中有八个球,三个红的,五个蓝的。我们随机不放回的抽两个球,我们打算求第一个球是红色时
(C1)
第二个球是蓝色
(C2)
的概率,我们可以这么分配概率:
那么在假设下,我们有 P(C1∩C2)=3857=1556=0.2679 。
例3:
依然考虑随机抽牌的试验,令
C1
表示前五张牌中有两张是同种花色,
C2
表示第六张与那两张同色,因此我们想计算的就是概率
P(C1∩C2)
,
所求的概率 P(C1∩C2) 就是这两项之积。
乘法法则可以扩展到是三个或更多的事件。对于三个事件的情况,利用两个事件的乘法法则得:
但是
P(C1∩C2)=P(C1)P(C2|C1)
,因此假设
P(C1∩C2)>0
,那么
这个过程可用于四个或更多的事件,对于 k 个事件的通用公式通过数学归纳法即可得出。
考虑
k
个互斥的事件
因为
C∩Ci,i=1,2,…
是互斥的,所以我们有
然而,
P(C∩Ci)=P(Ci)P(C|Ci),i=1,2,…,k
;所以
这个结果又是称为全概率公式。
假设
P(C)>0
,根据条件概率的定义,我们利用全概率公式可得
这就是著名的贝叶斯公式。利用此公式我们可以利用
C1,C2,…,Ck
以及
C
的条件概率计算给定