你走进了我的视觉,
我开始发现,
心里有个角落,
一直在等你出现。
你的可爱让我沦陷,
你的魅力让我倾倒,
总是想着看你一遍,
不管天涯海角,
我要在你的身边。
——畅宝宝的傻逼哥哥
对于前面介绍的方法,第k次迭代生成的点由
生成,其中
Sk={InH−1k对于最速下降法对于牛顿法
如果二次问题为
minimize f(x)=a+bTx+12xTHx
我们现在用任意一个n×n的正定矩阵Sk来求上述问题的解,看看会得到什么。通过对f(xk−αSkgk)求导并令其等于零,最小化f(xk−αSkgk)的α可以化简为
αk=gTkSkgkgTkSkHSkgk(2)
其中
gk=b+Hxk
是f(x)在点x=xk处的梯度。
可以说明的是
f(xk+1)−f(x∗)≤(1−r1+r)2[f(xk)−f(x∗)]
其中r是
β=(1−r1+r)2
如果r=1收敛最快,即SkH的特征值基本相等,这就意味着要想得到最好的结果,我们需要选择
SkH=In
或者
Sk=H−1
同样地,对于一般的最优化问题,我们选择的正定矩阵Sk应该等于或者至少近似等于H−1k。
拟牛顿法的搜索方向基于正定矩阵Sk,它由可得到的数据生成,并设法作为H−1k的近似。对于H−1k的近似法有许多,因此存在许多不同的拟牛顿法。
本文探讨了在最速下降法和牛顿法中如何选择最优迭代步长,给出了具体的数学推导过程,并介绍了拟牛顿法的基本原理及其在实际应用中的优势。
6299

被折叠的 条评论
为什么被折叠?



