数学杂谈
文章平均质量分 93
会敲键盘的猩猩
研究方向为机器学习,尤其是统计学习,数学业余爱好者。
展开
-
第一讲 数学方法论引论
声明:该文章是博主阅读《数学方法论选讲》的读书笔记。由于博主能力有限,中间有过错之处希望大家给予批评指正,一起学习交流。方法论(methodology)是把某种共同的发展规律和研究方法作为讨论对象的一门学问。(英文:methodology一词又译为方法学,正如大家所知,各门科学都有方法论,数学自然也有它的方法论。那什么是数学的方法论呢?数学方法论主要是研究和讨论数学的发展规律、数学的思想方法以及数学转载 2015-11-16 21:22:19 · 1288 阅读 · 1 评论 -
引言一
线性代数的核心在于两个操作,且都是基于向量。我们将两个向量相加得到v+w\boldsymbol{v+w},我们用数字cc 和 dd乘以他们得到 cvc\boldsymbol{v} 和 dwd\boldsymbol{w}。线性组合:cv+dw=c[11]+d[23]=[c+2dc+3d]c\boldsymbol{v}+d\boldsymbol{w}= \begin{equation} c\lef翻译 2015-12-05 02:02:05 · 793 阅读 · 0 评论 -
引言二
“你不能将苹果和橘子相加。”(You can’t add apples and oranges) 虽然方式有点奇怪,但对于向量来说,这就是原因。我们有两个数v1,v2v_1,v_2。这对值产生一个二维向量v:\boldsymbol{v}: 列向量:v=[v1v2]v1=第一分量v2=第二分量列向量:\boldsymbol{v}=\left[\begin{array}{c}v_1\\v_2\翻译 2015-12-09 16:50:26 · 942 阅读 · 1 评论 -
贝叶斯定理
贝叶斯理论观测,获取知识和进行预测是科学过程的基础。我们预测的准确性取决于我们目前知识的质量和观测的精度。天气预报是一个熟悉的例子,对于天气工作的原理,如果我们知道的越多,我们就能更好地利用当前的观察和季节性记录来预测明天是否会下雨,预测与观测之间的任何不同可用于改善天气模型。贝叶斯统计体现了应用先前的理论和经验知识来制定假设的这个循环,在观测数据的基础上对他们进行排名并用观测数据来更新先验概翻译 2015-05-05 23:59:32 · 2642 阅读 · 1 评论 -
第四讲 数学公理化方法(上)
公理化方法(或公理方法),就是从尽可能少的无定义的原始概念(基本概念)和一组不证自明的命题(基本公理)出发,利用纯逻辑推理法则,把一门数学建立成为演绎系统的一种方法。所谓基本概念和公理,当然必须反映数学实体对象的最单纯的本质和客观关系,而并非人们自由意志的随意创造。那它有什么用的?下面给出三点(不是只有这三点,作用可使多的很):这种方法具有分析、总结数字知识的作用。凡取得了公理化结构形式的数学,由转载 2015-11-20 16:37:20 · 3950 阅读 · 1 评论 -
第二讲 数学模型方法
声明:该文章是博主阅读《数学方法论选讲》的读书笔记。由于博主能力有限,中间有过错之处希望大家给予批评指正,一起学习交流。数学模型方法(mathematical modelling method)简称MM方法,它不仅是处理数学理论问题的一种经典方法,而且也是处理科技领域各种实际问题的一般数学方法。特别地,现代电子计算机的广泛应用和科学技术的数学化趋势,使得MM方法已经广泛地应用于自然科学、工程技术科学转载 2015-11-18 02:14:20 · 1164 阅读 · 1 评论 -
第三讲 关系映射反演原则
关系映射反演原则,是指一种分析处理问题的普遍方法或准则。它是属于一般科学方法论性质范畴的一种工作原则。因为这种普遍方法或工作原则包括着对所要研究的问题中的关系结构,采取映射和反演两个步骤去解决问题,所以给它的命名也就不免有点冗长了。这里所说的映射和反演可以赋予很广泛的含义。有时这么教条的定义,感觉很虚的啊,这离我们似乎十万八千里。我想说的是:非也,非也。其实在日常生活中,我们经常自觉或不自觉地在运用转载 2015-11-18 22:34:16 · 4842 阅读 · 2 评论 -
高斯消元法
矩阵,逆矩阵,秩,矩阵方程,参考代码。原创 2015-04-23 18:22:48 · 38859 阅读 · 1 评论 -
特征值和特征向量
介绍特征向量和特征值在计算机视觉和机器学习中有许多重要的应用。众所周知的例子是PCA(主成分分析)进行降维或人脸识别是特征脸。特征向量和特征值的一个有趣应用在我的另一篇有关误差椭圆的博文中提到。此外,特征值分解形成协方差矩阵几何解释的基础。在这篇文章中,我将简单的介绍这个数学概念,并且展示如何手动获取二维方形矩阵的特征值分解。特征向量是一个向量,当在它上面应用线性变换时其方向保持不变。考虑下面的图像翻译 2015-05-22 22:09:22 · 135562 阅读 · 14 评论 -
协方差矩阵的几何解释
介绍在本文中,我们通过探索线性变换与所得数据协方差之间的关系提供协方差矩阵一个直观的几何解释。大部分教科书基于协方差矩阵的概念解释数据的形状。相反,我们采取一个反向的方法,根据数据的形状来解释协方差矩阵的概念。在《为什么样本方差除以N-1?》的文章中,我们会讨论方差的概念,并提供了众所周知的估算样本方差公式的推导和证明。这篇文章中使用的图1表明标准差(方差的平方根)提供了数据在特征空间上传播多少的量翻译 2015-05-23 20:34:54 · 35369 阅读 · 12 评论