numpy中的cumsum函数

Cumsum :计算轴向元素累加和,返回由中间结果组成的数组
重点就是返回值是“由中间结果组成的数组”
以下代码在python3.6版本运行成功!
下面看代码,定义一个223的数组,所以其shape是2,2,3,索引分别0,1,2
shape 索引
2 0
2 1
3 2
代码:

import numpy as np
arr  = np.array([[[1,2,3],[8,9,12]],[[1,2,4],[2,4,5]]]) #2*2*3
print(arr.cumsum(0))
print(arr.cumsum(1))
print(arr.cumsum(2))
输出结果:
#cumsum(0)
[[[ 1  2  3]
  [ 8  9 12]]
 
 [[ 2  4  7]
  [10 13 17]]]
#cumsum(1)
[[[ 1  2  3]
  [ 9 11 15]]
 
 [[ 1  2  4]
  [ 3  6  9]]]
#cumsum(2)
[[[ 1  3  6]
  [ 8 17 29]]
 
 [[ 1  3  7]
  [ 2  6 11]]]

注释:
arr是一个223三维矩阵,索引值为0,1,2
cumsum(0):实现0轴上的累加:以最外面的数组元素为单位,以[[1,2,3],[8,9,12]]为开始实现后面元素的对应累加
cumsum(1):实现1轴上的累加:以中间数组元素为单位,以[1,2,3]为开始,实现后面元素的对应累加
cumsum(2):实现2轴上的累加:以最里面的元素为累加单位,即1为开始,实现后面的元素累加
四维数组实现
下面看一个四维数组222*4,索引值为0,1,2,3
代码:

import numpy as np
arr  = np.arange(32).reshape((2,2,2,4))
print(arr)
print(arr.cumsum(0))
print(arr.cumsum(1))
print(arr.cumsum(2))
print(arr.cumsum(3))
arr:
[[[[ 0  1  2  3]
   [ 4  5  6  7]]
 
  [[ 8  9 10 11]
   [12 13 14 15]]]
 
 
 [[[16 17 18 19]
   [20 21 22 23]]
 
  [[24 25 26 27]
   [28 29 30 31]]]]

arr是一个222*4四维矩阵,索引值为0,1,2,3
cumsum(0):实现0轴上的累加即:以最外面数组元素为单位即
[[[ 0 1 2 3]
[ 4 5 6 7]]

[[ 8 9 10 11]
[12 13 14 15]]]

[[[16 17 18 19]
[20 21 22 23]]

[[24 25 26 27]
[28 29 30 31]]]]
对应位置元素相加起来
结果:
[[[[ 0 1 2 3]
[ 4 5 6 7]]

[[ 8 9 10 11]
[12 13 14 15]]]

[[[16 18 20 22]
[24 26 28 30]]

[[32 34 36 38]
[40 42 44 46]]]]
cumsum(1):实现1轴上的累加即:以次外面元素为单位,累加:
[[ 0 1 2 3]
[ 4 5 6 7]]

[[ 8 9 10 11]
[12 13 14 15]]

[[16 17 18 19]
[20 21 22 23]]

[[24 25 26 27]
[28 29 30 31]]
累计过程产生的中间结果要记录到数组中
所以,结果:
[[[[ 0 1 2 3]
[ 4 5 6 7]]

[[ 8 10 12 14]
[16 18 20 22]]]

[[[16 17 18 19]
[20 21 22 23]]

[[40 42 44 46]
[48 50 52 54]]]]
cumsum(2)就对应从[ 0 1 2 3]数组元素开始实现累加,然后记录中间结果
cumsum(3)对应的是从最里面最小的数组元素,即从0开始实现累加,记录中间结果

作者:进阶机器学习
来源:CSDN
原文:https://blog.csdn.net/yuansuo0516/article/details/78331568
版权声明:本文为博主原创文章,转载请附上博文链接!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>