自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(181)
  • 资源 (1)
  • 问答 (1)
  • 收藏
  • 关注

原创 模型量化简介

模型量化是一种将高精度神经网络数值转换为低精度数值(如32位浮点数转8位整数)的技术,旨在降低模型存储、内存和计算开销,使其能在资源受限设备上高效运行。量化通过线性映射将浮点数值转为整数,并在推理时反量化回浮点。主流方法包括按量化粒度(Per-Tensor/Channel/Token)、训练阶段(PTQ/QAT)和数值格式(INT8/INT4/NF4)分类。量化可显著压缩模型大小(如Llama2-7B从13GB降至3.5GB)并提升推理速度(3倍以上),但面临精度损失、异常值和硬件支持等挑战。解决方案包括P

2026-01-21 17:14:41 930

原创 NLP中BIO标签浅析

BIO标签是NLP中序列标注任务的经典方案,主要用于命名实体识别、词性标注等任务。它使用B(开始)、I(内部)、O(外部)三个标签标记token角色,明确连续片段的边界。BIO解决了仅用两类标签时的边界模糊问题,并通过B-XXX/I-XXX组合区分独立或连续的片段。其变体包括更精细的BIOES和中文分词的BMES。虽然BIO简单高效,但不支持嵌套实体。该方案广泛应用于Transformer模型,通过token级交叉熵损失进行训练,是序列标注任务的基础方法。

2026-01-21 17:09:15 740

原创 Transformer 三大任务范式深度解析:翻译、理解与生成

摘要:本文系统分析了Transformer在三大任务中的应用范式:翻译型任务采用Encoder-Decoder架构实现序列转换;理解型任务通过Encoder-Only架构提取语义特征;生成型任务利用Decoder-Only结构进行自回归生成。文章详细拆解了各类任务的结构设计、输入输出形式和典型模型,如T5的统一文本转换、BERT的[CLS]分类机制等,揭示了Transformer灵活适应不同NLP需求的本质。150字

2026-01-20 17:53:17 955

原创 JIT实时编译和Java编译器的编译可不是一回事哦

Java编译与JIT编译的区别:javac将.java源码编译为跨平台的.class字节码(开发阶段),而JIT编译器在运行时将热点字节码动态优化为本地机器码(执行阶段)。前者确保跨平台性,后者提升运行性能。关键差异在于:javac是静态前端编译,JIT是动态后端优化,两者协同实现Java"一次编译,到处运行"的特性。典型优化包括方法内联、逃逸分析等,JIT通过运行时分析决定优化策略,对开发者完全透明。

2026-01-19 13:32:33 780

原创 使用FastMCP创建一个多工具MCP服务

摘要: MCP(Model Context Protocol)是一种语言无关的HTTP/JSON协议,用于解决大语言模型(LLM)与外部工具调用的耦合问题。相比传统方案,MCP支持工具独立部署、多语言开发和权限隔离。FastMCP是其Python实现,通过@app.tool装饰器快速暴露工具,并自动生成API Schema。示例演示了如何创建单位转换服务:服务端使用Pydantic定义输入格式,客户端通过HTTP调用工具。FastMCP简化了工具集成,支持生产级部署。

2026-01-16 14:20:25 1083

原创 LangGraph写一个Fuction Call Agent工作流

摘要: LangGraph是LangChain团队推出的开源库,专为构建状态化、可观测的智能体工作流而设计。它通过**有向图(Graph)**编排多步任务,将LLM的灵活性与工程化控制结合,解决了传统LangChain Agent在复杂场景下的局限性。核心优势包括: 显式状态管理(结构化State字典) 灵活拓扑支持(条件分支、并行、子图嵌套) 与LangChain生态无缝集成(复用工具、模型等组件)。 案例演示了如何用LangGraph实现Function Call智能体,动态调用天气查询和网络搜索工具。

2026-01-15 14:50:21 882

原创 Function Call类型的 Agent 实现多参数工具调用

大模型Agent架构中的Function Calling与ReAct是两种核心工具调用范式,主要区别在于: 实现机制: Function Calling通过模型直接输出结构化指令(如JSON),框架解析后执行 ReAct依赖模型按文本模板(Thought/Action/Observation)生成推理链 模型要求: Function Calling需要专门微调的模型(如GPT-4) ReAct适用于任何强文本生成模型(如Llama3) 性能对比: Function Calling更高效可靠,适合生产环境 R

2026-01-14 16:53:09 835

原创 一文吃透Jina Reranker模型的使用

讲述Jina Reranker的使用及于langchain的集成

2026-01-13 16:27:59 753

原创 双重检查锁(DCL)与 volatile 的关键作用

本文深入探讨Java单例模式的实现方式及其线程安全问题。首先介绍单例模式的核心要求:私有构造、静态实例和全局访问方法。然后对比分析饿汉式(线程安全但浪费资源)和懒汉式(延迟加载但线程不安全)两种经典实现。重点讲解双重检查锁(DCL)方案,指出其在Java5之前因指令重排序导致的"部分初始化对象"问题。最后强调正确实现DCL必须使用volatile关键字,其能禁止指令重排序并保证内存可见性,确保多线程环境下单例的正确创建。文章通过代码示例清晰展示了各种实现方式的优缺点及适用场景。

2026-01-11 19:19:25 912

原创 QwenAgent实现Agent多变量工具调用

QwenAgent是一个轻量级Agent框架,支持通过自定义工具扩展功能。本文演示了如何实现天气查询和网络搜索工具,并通过Ollama本地运行的Qwen2.5模型驱动Agent。代码展示了工具注册、参数定义、系统提示配置等关键步骤,测试了天气查询、网络搜索等场景的响应效果。该框架可灵活对接不同模型后端,工具调用采用JSON格式参数传递,实现了任务分解和自动重试机制。运行结果显示Agent能正确处理天气查询、信息搜索等请求,并给出符合预期的自然语言响应。

2026-01-08 13:37:03 414

原创 Langchain实现ReAct Agent多变量工具调用

大模型智能决策新范式:ReAct框架解析与实践 摘要:本文深入探讨了大语言模型(LLM)面临的"幻觉困境"及其解决方案ReAct框架。ReAct通过将推理(Reasoning)与行动(Acting)相结合,使模型能够调用外部工具并形成闭环决策。文章详细解析了ReAct的四步循环机制(Thought→Action→Action Input→Observation),并通过LangChain+Ollama实现了一个支持多参数工具调用的中文ReAct Agent。实验表明,该方法能有效解决传统

2026-01-07 17:00:09 1012

原创 计算机视觉中的Mask是干啥的

摘要: Mask(掩码)是计算机视觉中用于精确标识目标实例空间区域的二值矩阵,本质是像素级指示器(1为目标,0为背景)。在工业检测中,Mask相比矩形框能更精准刻画不规则缺陷(如裂纹、气孔)的形状和边界。其生成过程通过Mask R-CNN等模型实现:定位目标区域→上采样预测像素概率→二值化输出。核心优势包括像素级精度、实例独立性及几何特征可计算性,可直接用于缺陷参数测量。Mask不仅限于0/1形式,还可扩展为概率图或多通道表达,适应复杂场景需求。

2025-12-22 16:07:47 1268

原创 快速了解VIT模型

ViT(Vision Transformer)是计算机视觉领域的革命性模型,首次证明纯Transformer架构无需卷积即可在图像识别任务上超越CNN。ViT将图像切分为小块,转化为向量序列后输入标准Transformer编码器处理,通过自注意力机制建模全局依赖关系。尽管ViT在小数据上表现不佳,但在海量数据(如JFT-300M)上显著优于CNN。后续改进模型如DeiT、Swin Transformer等通过知识蒸馏、层次设计等优化,使其适用于工业检测等场景。ViT及其变体打破了CNN在视觉任务中的垄断地位

2025-12-22 15:38:04 854

原创 TextToSql——Vanna的安装与使用

摘要:Vanna 2.0是一个基于LLM的AI代理框架,允许用户通过自然语言与数据库交互。本文演示了如何通过Python代码配置Vanna,包括设置Ollama大模型服务、MySQL数据库连接以及用户认证系统。安装所需依赖后,运行FastAPI服务即可通过网页界面(端口8011)与数据库对话,示例展示了查询数据库表结构和筛选23岁员工等操作。该框架支持SQL执行、数据可视化等功能,提供直观的数据库交互体验。

2025-12-10 16:41:13 289 2

原创 傅里叶后导数变乘法,牛牛牛

傅里叶变换后,导数变乘法

2025-12-02 17:34:15 415

原创 运行docker镜像时OpenBLAS blas_thread_init的报错解决

运行docker镜像时OpenBLAS blas_thread_init的报错解决

2025-11-24 16:53:27 280

原创 VAE善于处理高度结构化的数据吗

VAE(变分自编码器)擅长处理具有复杂内部结构的数据,如图像、音频、文本等,能有效学习其潜在概率分布和层次特征。但对于传统表格型结构化数据(如数据库表),VAE并非最优选择,这类数据更适合梯度提升机或专为表格设计的生成模型。因此,VAE的核心优势在于处理非表格的复杂结构数据,而非行列分明的结构化数据。

2025-10-09 15:12:49 386

原创 theano.scan 起什么作用

theano.scan是Theano库中实现循环操作的核心函数,主要用于处理RNN/LSTM等模型的重复性计算结构。它通过将循环编译为计算图,支持自动微分和GPU加速,并能处理变长序列。基本语法包括定义扫描体函数(fn)、输入序列(sequences)、初始状态(outputs_info)、固定参数(non_sequences)和循环次数(n_steps)。示例展示了如何用scan构建简单RNN,包括定义符号变量、扫描体函数、调用scan以及编译执行。该功能极大简化了循环神经网络的实现和优化过程。

2025-09-30 15:21:15 357

原创 VRNN论文总结

本文重点解析了论文《A Recurrent Latent Variable Model for Sequential Data》中的关键问题。首先阐明了在RNN-Gauss/GMM模型中,输入数据x_t的微小变化成为系统唯一随机性来源的原因,并解释了RNN需要将这种微小变化映射到隐藏状态h_t的巨大变化上,以处理语音等高信噪比序列的建模需求。其次,分析了"高度结构化输出函数"的概念,指出复杂分布(如GMM)比单高斯分布更能捕捉数据中的多峰特性。最后详细解释了论文中语音信号表示为200维帧

2025-09-30 15:09:03 1152

原创 论文《A Recurrent Latent Variable Model for Sequential Data》翻译

本文提出了一种结合变分自编码器(VAE)和循环神经网络(RNN)的变分循环神经网络(VRNN)模型,用于建模高度结构化的序列数据。该模型通过引入时间依赖的潜在随机变量,解决了传统RNN在建模复杂序列变异性方面的局限性。VRNN使用RNN隐藏状态参数化潜在变量的先验分布,从而建立跨时间步的依赖关系。实验在语音和手写数据集上验证了该方法的有效性,结果表明VRNN在序列建模任务上优于标准RNN以及不考虑潜在变量时间依赖性的变体。这项工作为序列生成模型提供了一种新思路,通过结合确定性状态转移和随机潜在变量来增强模型

2025-09-26 17:53:39 1069 1

原创 自注意力机制(Self-Attention)简介

Transformer是一种基于自注意力机制的深度学习模型,由Google在2017年提出,成为BERT、GPT等大模型的基础架构。其核心包括Encoder-Decoder结构、多头自注意力机制、位置编码和前馈神经网络等组件。本文详细解析了Transformer的原理,包括自注意力计算、多头注意力机制、位置编码实现方式等关键技术。同时提供了一个简化版的PyTorch实现,展示了基本模型结构、位置编码以及因果掩码生成方法。该模型适用于序列到序列任务,如机器翻译,通过嵌入层、位置编码和Transformer层实

2025-09-23 17:08:06 1698

原创 RNN-Gauss / RNN-GMM 模型的结构

摘要: RNN-Gauss和RNN-GMM是结合RNN与概率分布的时间序列预测模型。RNN-Gauss输出单峰高斯分布(μ,σ),预测值并量化不确定性;RNN-GMM扩展为高斯混合模型,可捕捉多模态数据分布。二者均通过负对数似然损失训练,前者适用金融预测等需不确定性估计场景,后者更适合语音生成等多模态问题。关键区别在于RNN-GMM通过混合权重支持多峰预测,参数量更大但表达能力更强。这类模型实现了深度学习与概率模型的优势互补。

2025-09-23 16:55:32 621

原创 使用yolov8对视频进行目标检测

基于YOLOv8的视频目标检测实现指南 摘要:本文介绍了使用Ultralytics YOLO模型进行视频目标检测的完整流程。通过安装ultralytics和opencv-python依赖,用户可快速实现视频逐帧检测并保存结果。文章提供了基础代码实现,包括模型加载、视频处理、结果绘制和输出保存等关键步骤。同时介绍了多种功能扩展:特定类别检测、置信度阈值调整、检测数据保存和实时摄像头处理。性能优化方面建议使用GPU加速、跳帧处理和降低分辨率。还特别给出车辆检测与计数的完整案例,并解答了视频播放、检测速度慢等常见

2025-09-17 10:32:05 2128

原创 第一次使用coze工作流,生成简易行业报告

第一次使用coze工作流,生成简易行业报告

2025-09-08 17:34:16 1005

原创 关于深度学习中重参数化的总结

摘要: 重参数化技巧是VAE中的关键方法,解决了随机采样导致的梯度中断问题。传统采样操作不可导,无法反向传播梯度。重参数化将随机性转移到外部噪声$\varepsilon \sim \mathcal{N}(0,1)$,通过确定性变换$z=\mu+\sigma \cdot \varepsilon$实现可导,使梯度能传回编码器的参数$\mu$和$\sigma$。该方法将采样过程转化为“确定性计算+外部噪声”,既保留随机性又支持端到端训练。PyTorch实现中,通过独立采样$\varepsilon$并计算$z$,确

2025-08-04 16:33:00 964

原创 参数高效微调(PEFT):大模型时代的轻量级解决方案

本文介绍了参数高效微调(PEFT)技术,该技术通过在预训练大模型中仅更新少量参数来解决传统微调方法资源消耗大、易导致灾难性遗忘的问题。文章分析了PEFT的优势(高效性、稳定性、灵活性)和主流方法(Adapter、LoRA、Prefix Tuning、Prompt Tuning),并探讨了其在多语言翻译、个性化推荐等场景的应用。最后指出PEFT的未来发展方向,强调其作为大模型轻量级微调解决方案的重要价值,适合不同层次的研究者参考实践。

2025-07-25 15:00:09 1186

原创 经验累积分布函数VS累积分布函数

摘要:累积分布函数(CDF)和经验累积分布函数(ECDF)是描述数据分布的两种方法。CDF基于理论概率分布,适用于已知分布的理论分析;ECDF基于样本数据,是CDF的非参数估计,适用于未知分布的实际数据分析。CDF为平滑曲线,ECDF呈阶梯状。随着样本量增加,ECDF会逼近真实CDF。两者在理论研究和数据探索中各有优势,CDF用于建模预测,ECDF用于无参数分析和异常检测。

2025-07-25 10:34:47 1005

原创 我问deepseek,作为一名java兼大数据程序员,如何实现技术移民,感觉好难!!!

Java和大数据程序员技术移民指南:选择目标国家(如加拿大、澳大利亚、美国等),提升语言能力(雅思/托福),完成学历认证,积累2-3年工作经验。重点优化技术移民评分(年龄、语言、学历、经验),考取AWS/Google等技术认证,参与开源项目。热门国家对IT人才需求旺盛,需准备护照、成绩单、工作证明等材料。建议分阶段规划,咨询专业中介,关注最新移民政策。技术背景是核心优势,合理规划可实现移民目标。(149字)

2025-07-11 11:55:44 803

原创 BP神经网络对时序数据进行分类

本文介绍了使用PyTorch实现BP神经网络对时间序列数据进行分类的方法。首先生成三类时间序列数据(正弦波、锯齿波和方波),并进行数据预处理和划分。然后定义了一个包含全连接层和ReLU激活的BP神经网络模型,通过交叉熵损失和Adam优化器进行训练。实验结果显示模型在测试集上达到95%的准确率。文章还提出了改进方案,如增加隐藏层、使用正则化和调整学习率。该方法适用于简单时间序列分类任务,对于更复杂数据可考虑LSTM或Transformer等模型。

2025-07-11 11:49:46 709

原创 RapidMiner Studio中执行python代码并绘制频谱图

本文介绍了如何在RapidMiner Studio 10.3中使用Python代码绘制时序信号的频谱图。主要内容包括:首先检查并安装Execute Python扩展算子,配置Python环境;然后构建流程图,通过Read CSV算子导入数据;接着在Execute Python算子中输入代码执行FFT频谱分析,计算频率和振幅;最后查看运行结果。文中详细说明了各步骤的参数设置和代码实现,并提供了示例数据和运行结果展示。该方法利用RapidMiner与Python的结合实现了时序信号频谱分析功能。

2025-06-06 17:43:18 385

原创 图神经网络原理及应用简介

摘要: 图神经网络(GNN)是处理图结构数据的深度学习模型,通过消息传递机制聚合节点及其邻居信息。核心流程包括节点特征初始化、消息生成与聚合(如求和或注意力)、多轮迭代更新及下游任务输出。主流变体包括GCN、GAT、GraphSAGE和GIN,分别基于卷积、注意力、采样或同构理论优化。GNN广泛应用于社交网络、生物信息学、推荐系统等领域,优势在于灵活性和表达能力,但面临计算复杂、过平滑等挑战。未来需提升效率与泛化能力以应对实际需求。

2025-06-03 17:39:31 1167

原创 使用LSTM进行时间序列分析

LSTM(长短期记忆网络)是一种专为时间序列数据设计的循环神经网络,通过门控机制(输入门、遗忘门、输出门)和细胞状态有效捕捉长期依赖关系。相比传统方法,LSTM能更好处理时间序列的非线性、噪声和长期模式。典型应用流程包括数据生成(如带噪声的正弦波)、滑动窗口预处理、PyTorch模型构建(含LSTM层和全连接层)、训练及预测可视化。实验显示LSTM能准确预测时间序列趋势。其优势在于长期依赖性建模、鲁棒性强,并可扩展为双向LSTM、堆叠LSTM等变体。LSTM已成为时间序列分析的核心工具之一。

2025-05-28 17:45:47 1155

原创 多模态简介

摘要: 多模态方法通过融合时间序列、图像、文本等不同数据源提升任务性能。其优势在于克服单一模态的局限性,增强鲁棒性和预测精度,但需解决特征对齐、跨模态建模等挑战。实现上,需完成数据预处理(时间/空间对齐、清洗)、特征提取(统计、深度学习)、融合策略(早期/中期/晚期融合、注意力机制),并选择合适模型(传统机器学习、深度学习、GNN等)。实验验证多模态性能需对比单模态方法,评估指标包括准确率、F1分数等。核心在于数据对齐、特征融合与模型优化,适用于工业监控、医疗健康等领域。

2025-05-28 17:13:26 1531

原创 PINN是否需要对空间进行网格化

传统数值方法求解PDE需要网格化的原因 传统数值方法(如有限差分、有限元)求解偏微分方程必须进行空间网格化,主要原因包括: 连续问题离散化 - 将无限维连续问题转化为有限维离散问题,便于计算机处理; 局部性假设 - 导数计算依赖邻近网格点关系(如二阶差分公式); 计算可行性 - 网格化后转化为稀疏线性方程组,可通过高效数值方法求解。 PINN方法无需网格化的优势 物理信息神经网络(PINN)通过以下机制避免网格化: 函数逼近 - 神经网络直接参数化解函数,输入空间坐标即可输出解值; 自动微分 - 利用反向传

2025-05-28 15:44:23 1257

原创 np.r_的用法

np.r_ 是 NumPy 中的一个便捷工具,主要用于快速拼接数组或生成序列。它通过索引语法简化了数组操作,特别适用于按行拼接多个数组或生成等差序列。np.r_ 支持多种输入形式,包括数组、切片表达式和标量值,能够灵活地生成一维数组或拼接二维数组。与 np.c_ 不同,np.r_ 按行拼接数组,而 np.c_ 按列拼接。np.r_ 的简洁性和灵活性使其成为处理数组时的得力工具,适用于快速拼接、生成序列以及混合使用多种数据类型。

2025-05-19 17:31:56 558

原创 孤立森林和随机森林主要区别

孤立森林(Isolation Forest)是一种高效的异常检测算法,特别适用于高维数据。其核心思想是通过随机分割数据来快速隔离异常点,利用路径长度判断异常。与随机森林不同,孤立森林是无监督学习,目标为异常检测,分裂方式为随机选择特征和分割点,树的深度较浅,适用于网络安全、金融风控等领域的异常检测任务。孤立森林具有高效性、无需标签和对高维数据友好的优点,但也存在参数敏感性和对局部密度差异敏感的局限性。通过Python的sklearn库可以轻松实现孤立森林模型,并进行异常检测。

2025-05-19 17:29:00 1610

原创 一个SciPy图像处理案例的全过程

一个SciPy图像处理案例的全过程

2025-04-29 17:38:44 527

原创 整合 CountVectorizer 和 TfidfVectorizer 绘制词云图

本文分别整合 CountVectorizer 和 TfidfVectorizer 绘制词云图

2025-04-25 17:36:17 1184

原创 langchain之agent系列:zero-shot-react-description agent

langchain之agent系列:zero-shot-react-description agent

2025-04-10 14:55:19 503

原创 langchain、langsmith、langgraph分别是干什么的

langchain、langsmith、langgraph分别是干什么的

2025-04-01 17:26:31 1927

论文《A Recurrent Latent Variable Model for Sequential Data》

内容概要:本文提出了一种将潜在随机变量引入循环神经网络(RNN)隐藏状态的新型序列建模方法——变分循环神经网络(VRNN)。该模型结合了变分自编码器(VAE)的思想,在每个时间步引入高维潜在变量,并通过RNN对潜在变量之间的时序依赖关系进行建模,从而更好地捕捉高度结构化序列数据(如自然语音和手写轨迹)中的复杂变异性和长期依赖。与传统的RNN不同,VRNN不仅在输出层引入随机性,还在隐含状态中通过潜在变量建模时间动态变化,显著提升了生成质量和似然性能。实验表明,VRNN在多个语音数据集和手写数据集上优于标准RNN及其变体,尤其是在使用简单高斯输出分布的情况下仍能生成高质量样本,而传统模型则容易产生噪声或风格不一致的问题。; 适合人群:从事深度学习、序列建模、语音处理或生成模型研究的研究生、研究人员及算法工程师;具备一定概率图模型和RNN基础知识的技术人员;希望深入理解VAE与RNN融合机制的学习者。; 使用场景及目标:①用于自然语音波形的无条件生成任务,提升生成音频的清晰度并减少高频噪声;②应用于手写轨迹生成,保持书写风格的一致性与多样性;③探索潜在空间中时序依赖建模的有效性,为后续的可控序列生成提供理论支持;④作为研究VAE扩展到时序领域的典型范例,帮助理解变分推断在递归结构中的应用。; 阅读建议:建议读者先熟悉VAE和LSTM/GRU的基本原理,重点关注文中关于生成过程、近似后验推断以及目标函数的设计思路。可通过复现实验部分的关键模块(如条件先验网络、特征提取器等)加深对模型架构的理解,并结合图示(如图1和图2)分析潜在变量的动态演化规律。

2025-09-29

经典力学教材:Goldstein, Poole, Safko 第三版的详细解析与应用

内容概要:本书是经典力学领域的权威教材,由Herbert Goldstein, Charles P. Poole 和 John L. Safko 联合撰写。第三版对经典力学的核心概念进行了全面的更新和扩展,涵盖了从基本原理到高级理论的各个方面。书中深入讲解了力学的基本原则,变分原理,中心力场问题,刚体运动的动力学,混沌理论,摄动理论以及连续系统和场的拉格朗日和哈密顿公式。此外,还包括大量的例题和习题,帮助读者巩固和应用所学知识。 适合人群:具备一定物理基础的本科生和研究生,特别是物理专业的学生。 使用场景及目标:①深入理解经典力学的基本原理和高级理论;②掌握变分原理和拉格朗日、哈密顿公式;③研究混沌理论和非线性动力学;④解决实际物理问题和参与科研项目。 其他说明:本书内容丰富,理论严谨,是经典力学领域的经典之作。适合用作课程教材,也适合作为研究参考书。建议在学习过程中结合具体的例题和习题进行实践,以加深理解和掌握。

2024-12-26

博文《文件读取的高效方法与设计模式》中用到的文件

博文《文件读取的高效方法与设计模式》中用到的文件

2024-03-18

带高度和重量限制的最低水平线搜索算法代码

带高度和重量限制的最低水平线搜索算法代码,本资源基于作者博文《二维矩形件排样算法之最低水平线搜索算法实现》中的代码,加入了高度限制和重量限制,供广大读者参考

2022-10-08

手写数字的数据集MNIST

《Python神经网络编程》中提到的手写数字的数据集MNIST,用于神经网络训练和测试,不用再通过网络下载了,相关博文为《深度学习初遇——自己动手实现三层神经网络》。在主python文件相同目录下创建mnist_dataset文件夹,将资源文件中的所有文件放到刚创建的创建mnist_dataset文件夹下即可,资源中包括训练集的全部数据集和较小数据集以及测试集的全部数据集和较小数据集,大家根据自己的情况选择使用的数据集。网上可能也有相同的资源,这里上传是为读者方便运行博文《深度学习初遇——自己动手实现三层神经网络》中的代码。

2022-09-28

遗传算法原理及应用PDF

遗传算法原理及应用PDF

2022-05-10

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除