语义分割
waqiqi
很好
展开
-
Multi-Scale Context Aggregation by Dilated Convolution读书笔记
Dilated Convolution的产生是为了解决全卷积网络(FCN)在图像分割领域的问题,图像分割需要输入和输出在像素的shape保持一致,但由于池化层的存在导致FCN需要通过上采样扩增size,但是上采样并不能将丢失的信息无损的找回所以存在不足。Dilated Convolution想法很粗暴,既然池化的下采样操作会带来信息损失,那么就把池化层去掉。但是池化层去掉随之带来的是网络各层的感受野原创 2017-05-23 16:18:20 · 2868 阅读 · 1 评论 -
CASENet: Deep Category-Aware Semantic Edge Detection读书笔记
摘要:本文主要是给出一个类别感知的语义边缘检测算法。传统的边缘检测本身就是一个具有挑战性的二元问题,相比之下类别感知的语义边缘检测是一个更具有挑战性的多元问题。因为边缘像素出现在属于两个或更多个语义类的轮廓或连接点中,所以本文对每个边缘像素与至少两个类别相关联这个问题进行建模,并提出了一种新的基于ResNet的端到端深度语义边缘学习架构,以及新的跳跃结构,其中顶层卷积层上的类别边缘特征进行共享并与同一组底层特征进行融合。最后,提出了一个多类别的损失函数来监督特征的融合。原创 2017-06-11 14:13:08 · 7866 阅读 · 3 评论 -
关于freespace的调研
这是我在开始做可行驶区域的一个调研报告,后面还有陆陆续续的添加我的研究结果,希望大家多多交流原创 2017-04-26 10:10:51 · 14192 阅读 · 5 评论 -
Understanding Convolution for Semantic Segmentation读书笔记
本文主要是对上采样和dilated convolution进行了修改,优点在于:1.扩大网络的感受野,以聚集更多的全局信息,2.解决由标准dilated convolution所引起的"gridding效应",最后在cityscapes达到很好的效果。DUC:不同于传统的一次性回复全分辨率的label Map,我们通过学习一系列放大滤波器将缩小的特征图放大到所需大小的密集特征图。DUC能够原创 2017-06-07 03:25:52 · 1557 阅读 · 3 评论 -
Deep Feature Flow for Video Recognition读书笔记
摘要:本文主要提出了一个深度特征流算法,用于视频的识别。它仅在稀疏的关键帧上运行计算量极大的卷积子网络,并通过流场将它们的深度特征图传输到其他帧。由于流计算方法相对较快,所以算法得到了明显的加速。整个框架的端到端的训练明显提升了识别的精度。原创 2017-06-05 08:46:57 · 5186 阅读 · 0 评论 -
fcn拟合结果的分析(1)
直接使用fcn8s的caffemodel和train.prototxt,加入kitti的数据289张去拟合,横向测试分别用32000代,36000代,40000代,44000代,48000代,52000代和56000代,比较结果是56000代已经学习到马路边的特征,比fcn的效果好但是对于56000代在车上会呈现可行驶区域????而纵向测试发现,把cityscape的数据放入测试,会发现大原创 2017-05-08 09:06:49 · 2228 阅读 · 1 评论 -
Multi-Scale Context Aggregation by Dilated Convolution训练记录
读完文章后,觉得应该网络框架类似FCN,却可以达到更好的效果。该网络的准确度和花费时间都应该好于FCN-8S,打算funetune一个自己的模型。原创 2017-05-19 12:14:55 · 1969 阅读 · 1 评论 -
Pixel Deconvolutional Network读书笔记
本文主要是对传统的反卷积层进行修改,利用输入feature map来生成新的中间feature map,在根据之前所有的中间feature map生成下一个中间feature map,依次生成所有的中间feature map,最后在混合合并成输出的feature map。原创 2017-05-24 14:45:25 · 891 阅读 · 0 评论 -
fcn拟合结果(2)
前面主要说的是二分类的训练过程,作为一个FCN训练的一个尝试。对于多分类的过程,我会尽可能详尽描述我的训练过程。不过涉及公司,所以不能开源我的训练代码,抱歉啦,但是欢迎大家讨论。原创 2017-05-23 16:40:33 · 818 阅读 · 1 评论 -
ICNet读书笔记
本文主要提出了一个实时性的语义分割网络,兼顾速度的同时也保证了准确率。本文提出的模型利用了低分辨率图片的高效处理和高分辨率图片的高推断质量两种优点。主要思想是:让低分辨率图像经过整个语义网络输出一个粗糙的预测,然后利用文中提出的cascade fusion unit来引入中分辨率和高分辨率图像的特征,从而逐渐提高精度。本文首先分析了速度的分析。因为和PSPNet是同一个作者,所以他原创 2017-05-10 09:39:15 · 1892 阅读 · 0 评论 -
Rethinking Atrous Convolution for Semantic Image Segmentation读书笔记
这次连续更新两篇,这篇是deeplab的作者又一新作。原创 2017-07-04 15:28:55 · 2634 阅读 · 0 评论