题目网址:https://codility.com/programmers/lessons/3
题目大意:求一个数组中连续子段的最小平均值所对应的段落开始的下标,且下标最小(因为存在多种最小平均值的可能)。另外,输入数组的元素个数最小为2
题目分析:
刚看到题目的第一反应是“两个指针”的思路,但是在分析后发现,没有明显地升降规律。于是,考虑网上的答案,有如下面的解法。
任何大小大于等于2的数组都可以由大小为2或者3的子段a2,a3连接而成。比如,A[2]直接由一个a2组成,A[3]直接由a3组成,A[4]由两个a2组成,A[5]由一个a2和a3组成,以此类推,任何长度的数组都是由a2和a3组成,那么任何长度数组的平均值也由a2和a3的平均值决定,并且数组平均值必须大于等于a2和a3平均值的最小值。由此可以看到,只要找到所有a2和a3平均值最小者,它的开头序号就是我们要的答案。
方法的核心是将较大的问题分解为小问题,然后发现小问题的解决就是最终答案。这也是很多算法书上倡导的思路,从问题的小规模情况入手,去分析问题,往往更加有启示。
代码:
<span style="font-size:18px;">int solution(vector<int> &A) {
// write your code in C++11
if(A.size() == 2)
return 0;
int twoRes(0), threeRes(0);
int twoSum = A[0] + A[1];
int threeSum = twoSum + A[2];
for(int i = 2; i < A.size(); i++){
if(twoSum > A[i-1]+A[i]){
twoRes = i-1;
twoSum = (A[i-1]+A[i]);
}
if(threeSum > A[i-2]+A[i-1]+A[i]){
threeRes = i-2;
threeSum = (A[i-2]+A[i-1]+A[i]);
}
}
double twoAve = (A[twoRes]+A[twoRes+1])/2.0;
double threeAve = (A[threeRes]+A[threeRes+1]+A[threeRes+2])/3.0;
if( twoAve < threeAve ){
return twoRes;
}
else if(twoAve > threeAve){
return threeRes;
}
else{
return min(twoRes, threeRes);
}
}</span>