Fibonacci中第n个数的值求解

求解方法

1. 递归法

         可读性好,但效率低,时间复杂度为O(n*n)

 2. 窗口滑动法

        时间复杂度为O(n),

public int fibonacci(int n){
int a = 0;
int b = 1;
for (int i = 0; i < n - 1; i++) {
int c = a + b;
a = b;
b = c;
}
return a;
}

3. 矩阵幂乘法

    时间复杂度O(log2n)

    推导过程如下:


    java 实现如下:
    

public int getNthNumber(int n) {
    	//前两项判断
    	int flag = n-1;
		if(flag==0 ){
		    return 0;
		}else if (flag==1) {
			return 1;
		} 
    	//n>=2 处理
        long[][] base=new long[2][2];
        base[0][0]=1;
        base[0][1]=1;
        base[1][0]=1;
        base[1][1]=0;

        //求矩阵matrix的(n-1)次方;
        long[][] ret={{1,0},{0,1}};//初始化为单位矩阵E


       
        int exp=flag-1;
        long[][] tmp;

        while (exp>0){
        	//奇数次幂
            if((exp&1)>0){
                //ret*base
                tmp=new long[2][2];
                for(int i=0;i<2;i++){
                    for(int j=0;j<2;j++){
                        for(int k=0;k<2;k++){
                            tmp[i][j]+=ret[i][k]*base[k][j];//数组相乘                            
                        }
                    }
                }
                ret=Arrays.copyOf(tmp,tmp.length);//ret改值
            }
            //偶数次幂
            //base*base
            tmp=new long[2][2];
            for(int i=0;i<2;i++){
                for(int j=0;j<2;j++){
                    for(int k=0;k<2;k++){
                        tmp[i][j]+=base[i][k]*base[k][j];//注意这里的code                         
                    }
                }
            }
            base=Arrays.copyOf(tmp,tmp.length);//ret改值
            //exp右移一位
            exp=exp>>1;
        }
        //最后:ret第一行和两行一列矩阵[1,0]进行相乘,得到一个整数,即为所求.所以可以简化为将ret第一行数字进行相加即为所求
        return (int)(ret[0][0]);
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值