斐波那契数列的第n个数

动态规划

边界条件
F(0)=0 和F(1)=1
状态转移方程
n>1:F(n)=F(n−1)+F(n−2)
滚动数组思想
代码

func fib(n int) int {
    if n < 2 {
        return n
    }
    p, q, r := 0, 1, 0
    for i := 2; i <= n; i++ {
        r = p + q
        p = q
        q = r
    }
    return r
}

时间复杂度:O(n)。
空间复杂度:O(1)。

矩阵快速幂

快速幂算法:https://blog.csdn.net/qq_19782019/article/details/85621386在这里插入图片描述

type matrix [2][2]int

func mltiply(a, b matrix) (c matrix) {
	for i := 0; i < 2; i++ {
		for j := 0; j < 2; j++ {
			c[i][j] = a[i][0]*b[0][j] + a[i][1]*b[1][j]
		}
	}
	return c
}
func pow(a matrix, n int) matrix {
	ret := matrix{{1, 0}, {0, 1}} // 单位矩阵
	for ; n > 0; n >>= 1 {
		if n&1 == 1 {
			ret = mltiply(ret, a)
		}
		a = mltiply(a, a)
	}
	return ret
}
func fib(n int) int {
	if n < 2 {
		return n
	}
	res := pow(matrix{{1, 1}, {1, 0}}, n-1)
	return res[0][0]
}

时间复杂度:O(logn)。
空间复杂度:O(1)。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值