数学之路(3)-机器学习(3)-机器学习算法-神经网络[4]

Rosenblatt感知器的局限性

感知器仅对线性分类有效,非线性分类就成问题

比如说以上的6个点分为2类,用直线是很难做到的

本博客所有内容是原创,未经书面许可,严禁任何形式的转载

http://blog.csdn.net/u010255642


这2类点用PYTHON表述如下 :

x = np.array([[1,1,6],[1,3,12],[1,3,9],[1,3,21],[1,2,16],[1,3,15]])
d =np.array([1,1,-1,-1,1,-1])
w=np.array([b,0,0])
蓝色的点是表示2个元素的整除结果为偶数,黄色的点表示整除的结果为奇数

用前面的PYTHON感知器代码经过200次训练后,可以发现,效果不佳

..........

.........

第 197 次调整后的权值:
[ 35.4 -34.    2. ]
误差:8.000000
第 198 次调整后的权值:
[ 35.4 -34.4  -1.2]
误差:8.000000
第 199 次调整后的权值:
[ 36.2 -33.2   4. ]
误差:8.000000
第 200 次调整后的权值:
[ 36.2 -33.6   3.2]
误差:8.000000
第 201 次调整后的权值:
[ 36.2 -34.    2.4]
误差:8.000000
1 and 6 => 1
3 and 12 => -1
3 and 9 => -1
3 and 21 => -1
2 and 16 => 1
3 and 15 => -1
9 and 27 => -1
11 and 66 => -1


3 and 12 => -1

11 and 66 => -1

分类错误



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值