HDU 3652 数位DP

本文探讨了一种解决特定数值问题的算法实现,通过详细分析和代码展示,旨在提高解决此类问题的效率。该算法涉及到多项数学运算,如模运算、幂运算等,并通过动态规划方法优化了解决方案。此外,文章还介绍了算法的时间复杂度和空间复杂度分析,以及在实际应用中的潜在优化策略。
摘要由CSDN通过智能技术生成
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <sstream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <fstream>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <list>
#include <stdexcept>
#include <functional>
#include <utility>
#include <ctime>
#include <cassert>
#include <complex>
using namespace std;
typedef long long ll;
typedef long double ld;
const int int_max = 0x07777777;
const int int_min = 0x80000000;
const int inf=0x20202020;
const ll mod=1000000007;
const double eps=1e-9;
const double pi=3.1415926535897932384626;
const int DX[]={1,0,-1,0},DY[]={0,1,0,-1};
ll powmod(ll a,ll b) {ll res=1;a%=mod;for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll powmod(ll a,ll b,ll mod) {ll res=1;a%=mod;for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
bool cmp (const void *a , const void *b )
{
    return *(int *)a < *(int *)b;
}
int n;
int dp[12][10][2][13];    //dp[i][j][k][l] 表示位数的i,最高位为j,k(0表示不存在13,1表示存在13),l表示被13取模的结果 ,满足上述条件的数的个数。
int a[12];
int solve (int len){
    int sum = 0, tempsum=0, flag = 0;
    ll t[11];
    t[1] = 1;
    for(int i = 2; i < 11; i++) t[i] = 10*t[i-1];
    for(int i = len; i >= 1; i--){
        for(int x = 0; x < a[i]; x++){
            int lll = 13-tempsum;
            lll %= 13;
            lll = lll < 0 ? lll+13 : lll;
            sum += dp[i][x][1][lll];
            if(flag || (x==3 && a[i+1]==1)){
                sum += dp[i][x][0][lll];
            }
        }
        if(a[i]==3&&a[i+1]==1) flag = 1;
        tempsum += a[i]*t[i];
    }
    return sum;
}

int main()
{
    memset(dp,0,sizeof(dp));
    dp[0][0][0][0] = 1;
    for(int i = 1; i < 12; i++){
        for(int j = 0; j < 10; j++){
            for(int k = 0; k < 2; k++){
                for(int l = 0; l < 13; l++){
                    for(int x = 0; x < 10; x++){
                        if(k==0){
                            if(j==1 && x==3) continue;
                            int lll = l - j*(int)pow(10,i-1);
                            lll %= 13;
                            lll = lll < 0 ? lll+13 : lll;
                            dp[i][j][k][l] += dp[i-1][x][k][lll];
                        }else{
                            int lll = l - j*(int)pow(10,i-1);
                            lll %= 13;
                            lll = lll < 0 ? lll+13 : lll;
                            dp[i][j][k][l] += dp[i-1][x][k][lll];
                            if(j==1 &&x==3) dp[i][j][k][l] += dp[i-1][x][0][lll];
                        }
                    }
                }
            }
        }
    }

    while(scanf("%d", &n)!=EOF){
        memset(a,0,sizeof(a));
        n++;
        int len = 0;
        while(n){
            a[++len] = n%10;
            n /= 10;
        }
        int ret = solve(len);
        printf("%d\n", ret);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值