LeetCode 730. Count Different Palindromic Subsequences

Question

Given a string S, find the number of different non-empty palindromic subsequences in S, and return that number modulo 10^9 + 7.
A subsequence of a string S is obtained by deleting 0 or more characters from S.
A sequence is palindromic if it is equal to the sequence reversed.
Two sequences A_1, A_2, ... and B_1, B_2, ... are different if there is some i for which A_i != B_i.
Example 1:
Input: 
S = 'bccb'
Output: 6
Explanation: 
The 6 different non-empty palindromic subsequences are 'b', 'c', 'bb', 'cc', 'bcb', 'bccb'.
Note that 'bcb' is counted only once, even though it occurs twice.
Example 2:
Input: 
S = 'abcdabcdabcdabcdabcdabcdabcdabcddcbadcbadcbadcbadcbadcbadcbadcba'
Output: 104860361
Explanation: 
There are 3104860382 different non-empty palindromic subsequences, which is 104860361 modulo 10^9 + 7.
Note:
  • The length of S will be in the range [1, 1000].
  • Each character S[i] will be in the set {'a', 'b', 'c', 'd'}.

Analysis

    这个题目看起来很复杂,但是用动态规划求解其实很简单。本文的方法参考了花花酱在youtube上的视频

    具体思路是,设dp[i,j]表示S[i]到S[j]之间这段字符串中不重复的回文子串的数量。那么在求dp[i,j]的时候,根据S[i]和S[j]是否相同,进行分类讨论。主要思想是用子问题组合解决新问题,同时去掉重复计数的部分。

若S[i]!=S[j],则 dp[i,j] = dp[i, j-1] +dp[i+1,j] - dp[i+1,j-1]


若S[i]=S[j],需要根据S[i+1]-S[j-1]之间S[i]的个数进一步分类讨论,分为包含零个、一个以及两个或更多这三种情况:

S[i+1]-S[j-1]中间没有S[i]: dp[i,j] = dp[i+1, j-1] * 2 + 2

S[i+1]-S[j-1]中间有一个S[i]: dp[i,j] = dp[i+1, j-1] * 2 + 1

S[i+1]-S[j-1]中间有两个S[i],其中第一个S[i]出现在ii位置,最后一个出现在jj位置: dp[i,j] = dp[i+1, j-1] * 2 - dp[ii+1, jj-1]


总结一下:

起始值为:dp[i,i]=1; dp[i,j] = 0 (i > j);

    只要理解了其中的思路,实现起来就非常容易了。

Solution

class Solution {
public:
    int countPalindromicSubsequences(string S) {
        int n = S.length();
        long int mod = 1000000007;
        vector<vector<long int>>dp(n, vector<long int>(n, 0));
        for(int i = 0; i < n; ++i){
            dp[i][i] = 1;
        }
        for(int len = 1; len < n; ++len){
            for(int i = 0; i < n - len; ++i){
                int j = i + len;
                if(S[i] == S[j]){
                    int ii = i + 1;
                    while(S[ii] != S[i])
                        ii++;
                    int jj = j - 1;
                    while(S[jj] != S[j])
                        jj--;
                    if(ii == jj)
                        dp[i][j] = dp[i + 1][j - 1] * 2 + 1;
                    else if(ii > jj)
                        dp[i][j] = dp[i + 1][j - 1] * 2 + 2;
                    else
                        dp[i][j] = dp[i + 1][j - 1] * 2 - dp[ii + 1][jj - 1];
                }
                else{
                    dp[i][j] = dp[i][j - 1] + dp[i + 1][j] - dp[i + 1][j - 1];
                }
                dp[i][j] = (dp[i][j] + mod) % mod;
            }
        }
        return dp[0][n - 1];
    }
};
展开阅读全文

没有更多推荐了,返回首页