坏掉的机器人

算法分析:
有后效性dp。dp方程很好推,但是状态之间有后效性,需要用高斯消元同时求出各个状态。裸的高斯消元时间复杂度为 O ( n m 2 ) O(nm^2) O(nm2),超时。仔细观察,每行数据只有2到3个非0,因此不需要套模板,直接消掉就可以。

原先的矩阵类似如下,x是占位符,非0。z是常数。

[ x x 0 0 0 0 0 z x x x 0 0 0 0 z 0 x x x 0 0 0 z 0 0 x x x 0 0 z 0 0 0 x x x 0 z 0 0 0 0 x x x z 0 0 0 0 0 x x z ] \begin{bmatrix} x & x & 0 & 0 & 0 & 0 & 0 & z\\ x & x & x & 0 & 0 & 0 & 0 & z\\ 0 & x & x & x & 0 & 0 & 0 & z\\ 0 & 0 & x & x & x & 0 & 0 & z\\ 0 & 0 & 0 & x & x & x & 0 & z\\ 0 & 0 & 0 & 0 & x & x & x & z\\ 0 & 0 & 0 & 0 & 0 & x & x & z\\ \end{bmatrix} xx00000xxx00000xxx00000xxx00000xxx00000xxx00000xxzzzzzzz
从上往下开始消,每行留两个未知数。

[ x x 0 0 0 0 0 z 0 x x 0 0 0 0 z 0 0 x x 0 0 0 z 0 0 0 x x 0 0 z 0 0 0 0 x x 0 z 0 0 0 0 0 x x z 0 0 0 0 0 0 x z ] \begin{bmatrix} x & x & 0 & 0 & 0 & 0 & 0 & z\\ 0 & x & x & 0 & 0 & 0 & 0 & z\\ 0 & 0 & x & x & 0 & 0 & 0 & z\\ 0 & 0 & 0 & x & x & 0 & 0 & z\\ 0 & 0 & 0 & 0 & x & x & 0 & z\\ 0 & 0 & 0 & 0 & 0 & x & x & z\\ 0 & 0 & 0 & 0 & 0 & 0 & x & z\\ \end{bmatrix} x000000xx000000xx000000xx000000xx000000xx000000xxzzzzzzz

再从下往上消,每行留一个未知数。

[ x 0 0 0 0 0 0 z 0 x 0 0 0 0 0 z 0 0 x 0 0 0 0 z 0 0 0 x 0 0 0 z 0 0 0 0 x 0 0 z 0 0 0 0 0 x 0 z 0 0 0 0 0 0 x z ] \begin{bmatrix} x & 0 & 0 & 0 & 0 & 0 & 0 & z\\ 0 & x & 0 & 0 & 0 & 0 & 0 & z\\ 0 & 0 & x & 0 & 0 & 0 & 0 & z\\ 0 & 0 & 0 & x & 0 & 0 & 0 & z\\ 0 & 0 & 0 & 0 & x & 0 & 0 & z\\ 0 & 0 & 0 & 0 & 0 & x & 0 & z\\ 0 & 0 & 0 & 0 & 0 & 0 & x & z\\ \end{bmatrix} x0000000x0000000x0000000x0000000x0000000x0000000xzzzzzzz

这样就化成了简化阶梯型矩阵。

需要注意边界 m m m = = = 1 1 1的情况。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
int n, m;
double f[1005][1005], b[1005][1005];
void gauss(int hang)
{
	// 从上往下消  
	for (int i = 1; i < m; ++i)
	{
		double r = b[i+1][i] / b[i][i];
		for (int k = i; k <= i + 2 && k <= m; ++k)
			b[i+1][k] = b[i+1][k] - r * b[i][k];
		b[i+1][m+1] = b[i+1][m+1] - r * b[i][m+1]; 
	}
	// 从下往上消 
	for (int i = m; i > 1; --i)
	{
		double r = b[i-1][i] / b[i][i];
		for (int k = i; k >= i - 1 && k >= 1; --k)
			b[i-1][k] = b[i-1][k] - r * b[i][k];
		b[i-1][m+1] = b[i-1][m+1] - r * b[i][m+1];
	}
	
	for (int i = 1; i <= m; ++i) f[hang][i] = b[i][m+1] / b[i][i];
}

int main()  
{
	scanf("%d%d", &n, &m);
	int x, y;
	scanf("%d%d", &x, &y);
	
//	for (int j = 1; j <= m; ++j) f[n][j] = 0;
	if (m == 1)
	{
		for (int i = n - 1; i >= 1; --i) f[i][1] = f[i+1][1] + 2;
	}else
	{
		for (int i = n - 1; i >= 1; --i)
		{
			memset(b, 0, sizeof(b));
			b[1][1] = 2; b[1][2] = -1; b[1][m+1] = f[i+1][1] + 3;
			int hang = 1;
			for (int k = 2; k < m; ++k)
			{
				++hang;
				b[hang][k-1] = -1; b[hang][k] = 3; b[hang][k+1] = -1; b[hang][m+1] = f[i+1][k] + 4; 
			}
			b[m][m-1] = -1; b[m][m] = 2; b[m][m+1] = f[i+1][m] + 3;
			// m个方程,m个未知数为b[i][j], j属于[1,m]  
			gauss(i);
		}
	}
	printf("%.4lf\n", f[x][y]);
	return 0;
}

总结与反思:

  1. 高斯消元目标是化成简化阶梯型矩阵,如果矩阵有特点,可以考虑其他方法,不用拘泥于形式。
  2. 考虑转移方程时,要再思考下,特殊情况能否适应该方程,比如此题m为1时就不适应。
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值