题目链接:P5652 基础博弈练习题
算法分析
题目很有思考价值。博弈论的题目大多需要绕来绕去。
题意中,如果一方走到了 i i i,那么另一方只能在区间 [ i , m a x ( i + m , n ) ] [i, max(i+m,n)] [i,max(i+m,n)]之间走。假设序列b长度为1,此时该列为偶数的话,先手必胜;否则,先手必败。如果序列b长度为2,很容易想到,假设最后一列长度为奇数,谁先走到最后一列,谁胜;如果最后一列长度为偶数,谁先走到最后一列,谁败。
依次类推,我们需要考虑最后一列的奇偶性。用必胜态和必败态进行描述,指的都是先手。假设此时最后一列是第 i i i列。
若 a [ i ] a[i] a[i]是奇数,谁先到达该列谁胜,是必胜态,则 [ i − m , i − 1 ] [i-m,i-1] [i−m,i−1]是必败态,谁先到谁输。双方都会争取留在第 i − m − 1 i-m-1 i−m−1列上。此时需要判别第 i − m − 1 i-m-1 i−m−1列的奇偶性。
若 a [ i ] a[i] a[i]是偶数,谁先到达该列谁输,是必败态,双方都会争取留在第 i − 1 i-1 i−1列,此时需要判别第 i − 1 i-1 i−1列的奇偶性。
因此,从后往前推,可以通过判别某列的奇偶性,找到必胜态。设 p r e [ i ] pre[i] pre[i]表示第 i i i列之前最近的必胜态是哪一列。可以有:
若 a [ i ] a[i] a[i]是奇数,如果 a [ i − m − 1 ] a[i-m-1] a[i−m−1]是奇数,则 p r e [ i ] = i − m − 1 pre[i]=i-m-1 pre[i]=i−m−1,否则 p r e [ i ] = p r e [ i − m − 1 ] pre[i]=pre[i-m-1] pre[i]=pre[i−m−1]
若 a [ i ] a[i] a[i]是偶数,如果 a [ i − 1 ] a[i-1] a[i−1]是奇数,则 p r e [ i ] = i − 1 pre[i]=i-1 pre[i]=i−1,否则 p r e [ i ] = p r e [ i − 1 ] pre[i]=pre[i-1] pre[i]=pre[i−1]
对于区间
[
l
,
r
]
[l,r]
[l,r],如果必胜局面是怎么样的?可以考虑以上两种形态。上面的形态都是必胜态转向必胜态,注意,必胜态中间是有必败态的。下面的形态中最后由必胜态转向必败态,中间没有其他形态,是直接转向的。先手在必胜态,然后紧接着到了后手,后手面临必败态。
那么什么情况下区间 [ l , r ] [l,r] [l,r]不是必胜局面呢?当 l l l无法转向 r r r时必败。
这时,我们就很自然的建树。 ( p r e [ i ] , i ) (pre[i],i) (pre[i],i)是一条边。发现这其实是个森林,我们可以让没有pre的点都指向0结点,这样就形成了一棵以0为根结点的树。在这棵树中,如果 l l l是 r r r的祖先结点,那么先手必胜。
用时间戳即可判定。如果满足 d f n [ l ] < = d f n [ r ] < = d f n [ l ] + s i z e [ l ] − 1 dfn[l]<=dfn[r]<=dfn[l]+size[l]-1 dfn[l]<=dfn[r]<=dfn[l]+size[l]−1成立,则 l l l是 r r r的祖先结点。
在最初放置在 l l l位置的时候, a [ l ] a[l] a[l]要减1,这意味着可以看做先手减1,判断是否后手必胜。结合树结构来理解,即 l l l这个位置一定要操作,否则就无法确定区间的左端点了,因此最初减1是很必要的,如果不减1,题意就根本性变化了。
在树上判断 [ l , r ] [l,r] [l,r]的父子关系,前提是 l < r l<r l<r,如果 l = r l=r l=r呢?这个需要特判。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define ll long long
const ll Mod = 1LL << 32; // 注意
int n, m, q, type, a[1000010], pre[1000010], dfn[1000010], tot, szsize[1000010];
int h[1000010], cnt;
int A, B, C, P;
struct node
{
int next, to;
}edg[1000010];
inline void add(int u, int v)
{
++cnt;
edg[cnt].next = h[u];
edg[cnt].to = v;
h[u] = cnt;
}
inline int szread()
{
int x = 0, f = 1; char c = getchar();
while (c < '0' || c > '9')
{
if (c == '-') f = -1;
c = getchar();
}
while (c >= '0' && c <= '9')
{
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
void dfs(int u)
{
dfn[u] = ++tot;
for (int i = h[u]; i; i = edg[i].next)
dfs(edg[i].to);
}
void dfs_size(int u)
{
szsize[u] = 1;
for (int i = h[u]; i; i = edg[i].next)
{
dfs_size(edg[i].to);
szsize[u] += szsize[edg[i].to];
}
}
inline int rnd()
{
return A = (A * B + C) % P;
}
int szquery(int l, int r)
{
if (dfn[l] <= dfn[r] && dfn[r] <= dfn[l] + szsize[l] - 1) return 1;
else return 0;
}
int main()
{
n = szread(); m = szread(); q = szread(); type = szread();
for (int i = 1; i <= n; ++i) a[i] = szread(), a[i] &= 1;
for (int i = 1; i <= n; ++i)
{
if (a[i]) // 奇数
{
if (i - m - 1 >= 1)
{
if (a[i-m-1]) pre[i] = i - m - 1;
else pre[i] = pre[i-m-1];
}
else pre[i] = 0;
}else // 偶数
{
if (a[i-1]) pre[i] = i - 1;
else pre[i] = pre[i-1];
}
}
// 建树 0号点是根节点
for (int i = 1; i <= n; ++i)
add(pre[i], i);
dfs(0); // 记录每个点第一次被访问时的时间戳dfn
dfs_size(0); // 记录子树大小
int l, r, ansi;
ll ans = 0;
if (type)
{
A = szread(); B = szread(); C = szread(); P = szread();
}
for (int i = 1; i <= q; ++i)
{
if (type)
{
l = rnd() % n + 1; r = rnd() % n + 1;
if (l > r) swap(l, r);
}else
{
l = szread(); r = szread();
}
if (l == r) // 重要
{
if (a[l]) ansi = 0; else ansi = 1;
}else
{
if (!szquery(l, r)) ansi = 1; else ansi = 0;
}
ans += ((ll)i * i * ansi) % Mod;
}
printf("%lld\n", ans % Mod);
return 0;
}
反思与总结
-
2 32 2^{32} 232超过了 i n t int int,因此宏定义时要 c o n s t l l M o d = 1 L L < < 32 const \, ll \, Mod = 1LL << 32 constllMod=1LL<<32,1后面的 L L LL LL是转换为long long的意思,没有这部转化,会错误。
-
链式前向星存图效率还是很高的,对比vector存图,时间和空间有明显的优化。
-
开long long,一般不会卡常。但是不需要开的时候,最好还是不开。
-
推博弈论的题目,要从最简单和一般的情形开始,然后导出必胜态和必败态。