P5652 基础博弈练习题

题目链接:P5652 基础博弈练习题

算法分析

题目很有思考价值。博弈论的题目大多需要绕来绕去。

题意中,如果一方走到了 i i i,那么另一方只能在区间 [ i , m a x ( i + m , n ) ] [i, max(i+m,n)] [i,max(i+m,n)]之间走。假设序列b长度为1,此时该列为偶数的话,先手必胜;否则,先手必败。如果序列b长度为2,很容易想到,假设最后一列长度为奇数,谁先走到最后一列,谁胜;如果最后一列长度为偶数,谁先走到最后一列,谁败。

依次类推,我们需要考虑最后一列的奇偶性。用必胜态和必败态进行描述,指的都是先手。假设此时最后一列是第 i i i列。

a [ i ] a[i] a[i]是奇数,谁先到达该列谁胜,是必胜态,则 [ i − m , i − 1 ] [i-m,i-1] [im,i1]是必败态,谁先到谁输。双方都会争取留在第 i − m − 1 i-m-1 im1列上。此时需要判别第 i − m − 1 i-m-1 im1列的奇偶性。

a [ i ] a[i] a[i]是偶数,谁先到达该列谁输,是必败态,双方都会争取留在第 i − 1 i-1 i1列,此时需要判别第 i − 1 i-1 i1列的奇偶性。

因此,从后往前推,可以通过判别某列的奇偶性,找到必胜态。设 p r e [ i ] pre[i] pre[i]表示第 i i i列之前最近的必胜态是哪一列。可以有:

a [ i ] a[i] a[i]是奇数,如果 a [ i − m − 1 ] a[i-m-1] a[im1]是奇数,则 p r e [ i ] = i − m − 1 pre[i]=i-m-1 pre[i]=im1,否则 p r e [ i ] = p r e [ i − m − 1 ] pre[i]=pre[i-m-1] pre[i]=pre[im1]

a [ i ] a[i] a[i]是偶数,如果 a [ i − 1 ] a[i-1] a[i1]是奇数,则 p r e [ i ] = i − 1 pre[i]=i-1 pre[i]=i1,否则 p r e [ i ] = p r e [ i − 1 ] pre[i]=pre[i-1] pre[i]=pre[i1]

在这里插入图片描述
对于区间 [ l , r ] [l,r] [l,r],如果必胜局面是怎么样的?可以考虑以上两种形态。上面的形态都是必胜态转向必胜态,注意,必胜态中间是有必败态的。下面的形态中最后由必胜态转向必败态,中间没有其他形态,是直接转向的。先手在必胜态,然后紧接着到了后手,后手面临必败态。

那么什么情况下区间 [ l , r ] [l,r] [l,r]不是必胜局面呢?当 l l l无法转向 r r r时必败。

这时,我们就很自然的建树。 ( p r e [ i ] , i ) (pre[i],i) (pre[i],i)是一条边。发现这其实是个森林,我们可以让没有pre的点都指向0结点,这样就形成了一棵以0为根结点的树。在这棵树中,如果 l l l r r r的祖先结点,那么先手必胜。

用时间戳即可判定。如果满足 d f n [ l ] < = d f n [ r ] < = d f n [ l ] + s i z e [ l ] − 1 dfn[l]<=dfn[r]<=dfn[l]+size[l]-1 dfn[l]<=dfn[r]<=dfn[l]+size[l]1成立,则 l l l r r r的祖先结点。

在最初放置在 l l l位置的时候, a [ l ] a[l] a[l]要减1,这意味着可以看做先手减1,判断是否后手必胜。结合树结构来理解,即 l l l这个位置一定要操作,否则就无法确定区间的左端点了,因此最初减1是很必要的,如果不减1,题意就根本性变化了。

在树上判断 [ l , r ] [l,r] [l,r]的父子关系,前提是 l < r l<r l<r,如果 l = r l=r l=r呢?这个需要特判

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define ll long long
const ll Mod = 1LL << 32;  // 注意  
int n, m, q, type, a[1000010], pre[1000010], dfn[1000010], tot, szsize[1000010];
int h[1000010], cnt;
int A, B, C, P;
struct node
{
	int next, to;
}edg[1000010];
inline void add(int u, int v)
{
	++cnt;
	edg[cnt].next = h[u];
	edg[cnt].to = v;
	h[u] = cnt;
}
inline int szread()
{
	int x = 0, f = 1; char c = getchar();
	while (c < '0' || c > '9')
	{
		if (c == '-') f = -1;
		c = getchar();
	}
	while (c >= '0' && c <= '9')
	{
		x = x * 10 + c - '0';
		c = getchar();
	}
	return x * f;
}
void dfs(int u)
{
	dfn[u] = ++tot;
	for (int i = h[u]; i; i = edg[i].next)
		dfs(edg[i].to);
}
void dfs_size(int u)
{
	szsize[u] = 1;
	for (int i = h[u]; i; i = edg[i].next)
	{
		dfs_size(edg[i].to);
		szsize[u] += szsize[edg[i].to];
	}
}
inline int rnd()
{
	return A = (A * B + C) % P;
}
int szquery(int l, int r)
{
	if (dfn[l] <= dfn[r] && dfn[r] <= dfn[l] + szsize[l] - 1) return 1;
	else return 0;
}
int main()   
{
	n = szread(); m = szread(); q = szread(); type = szread();
	for (int i = 1; i <= n; ++i) a[i] = szread(), a[i] &= 1;
	for (int i = 1; i <= n; ++i)
	{
		if (a[i]) // 奇数 
		{
			if (i - m - 1 >= 1)
			{
				if (a[i-m-1]) pre[i] = i - m - 1;
				else pre[i] = pre[i-m-1];
			}
			else pre[i] = 0;
		}else  // 偶数  
		{
			if (a[i-1]) pre[i] = i - 1;
			else pre[i] = pre[i-1];
		}
	}
	// 建树 0号点是根节点 
	for (int i = 1; i <= n; ++i)
		add(pre[i], i); 
		
	dfs(0); // 记录每个点第一次被访问时的时间戳dfn  
	dfs_size(0); // 记录子树大小  
	int l, r, ansi;
	ll ans = 0;
	if (type)
	{
		A = szread(); B = szread(); C = szread(); P = szread();
	}
	for (int i = 1; i <= q; ++i)
	{
		if (type)
		{
			l = rnd() % n + 1; r = rnd() % n + 1;
			if (l > r) swap(l, r);
		}else
		{
			l = szread(); r = szread();
		}
		if (l == r)  // 重要  
		{
			if (a[l]) ansi = 0; else ansi = 1;
		}else
		{
			if (!szquery(l, r)) ansi = 1; else ansi = 0;
		}		
		ans += ((ll)i * i * ansi) % Mod;
	}
	printf("%lld\n", ans % Mod);
	return 0;
}

反思与总结

  1. 2 32 2^{32} 232超过了 i n t int int,因此宏定义时要 c o n s t   l l   M o d = 1 L L < < 32 const \, ll \, Mod = 1LL << 32 constllMod=1LL<<32,1后面的 L L LL LL是转换为long long的意思,没有这部转化,会错误。

  2. 链式前向星存图效率还是很高的,对比vector存图,时间和空间有明显的优化。

  3. 开long long,一般不会卡常。但是不需要开的时候,最好还是不开。

  4. 推博弈论的题目,要从最简单和一般的情形开始,然后导出必胜态和必败态。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值