MySQL索引

索引的目的是为了提高数据查询的效率。常见的索引模型:哈希表、有序数组和搜索树。
    哈希表:键-值(key-value),把值放在数组里,用一个哈希函数把key换算成一个确定的位置,然后把value放在数组的这个位置。
解决哈希冲突的方式是链表。适用于只有等值查询的场景。
    有序数组:按顺序存储。查询用二分法就可以快速查询,时间复杂度是:O(log(N))。查询效率高,更新效率低。适用于静态存储引擎。
    二叉搜索树:每个节点的左儿子小于父节点,右儿子大于父节点。查询和更新的时间复杂度都为O(log(N))。
数据库存储大多不适用二叉树,因为树太高,访问的数据块太多。使用"N叉树","N叉树"中的"N"取决于数据块的大小。
InnoDB使用了B+树索引模型,所有数据都存储在B+树中。每一个索引在InnoDB里面对应一颗B+树。

// 主键列为id的表,表中有字段k,并且在k上有索引。
mysql> create table T(
id int primary key, 
k int not null, 
name varchar(16),
index (k))engine=InnoDB;
insert into T(id,k) values(100,1),(200,2),(300,3),(500,5),(600,6),(700,7);

主键索引(聚簇索引)的叶子节点存的是整行数据
非主键索引(二级索引)的叶子节点内容是主键的值

# 覆盖索引

select * from T where k between 3 and 5
//查询过程中读了k索引树的3条记录(步骤1、3、5),回表两次(步骤2、4)。
select id from T where k between 3 and 5
// 只需要查id的值,而id的值已经在k索引树上了,因此可以直接提供查询结果,不需要回表。

也就是说,在这个查询里,索引k已经"覆盖"了我们的查询需求,称为覆盖索引
由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。

# 最左前缀原则(联合索引)
B+树这种索引结构,可以利用索引的"最左前缀",来定位记录。
Q:在建立联合索引的时候,如何安排索引内的字段顺序?
1、如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。已经有(a,b)这个联合索引后,一般就不需要单独在a上建立索引了。查询条件里面只有b的语句,是无法使用(a,b)这个联合索引的。此时就需要同时维护(a,b)、(b)这两个索引。
2、考虑空间。如果a字段比b字段大,则使用(a,b)、(b)减少空间。

# 索引下推
以联合索引(name, age)为例,检索出表中"名字第一个字是张",而且年龄是10岁的所有男孩。

select * from tuser where name like '张 %' and age=10 and ismale=1;

根据前缀索引规则,这个语句在搜素索引树时,只能用"张",找到第一个满足条件的记录(假设为id3),然后判断其他条件是否满足。
MySQL5.6之前,只能从id3开始一个个回表,到主键索引上找出数据行,再对比字段值。
MySQL5.6引入的索引下推优化,可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足的记录,减少回表次数。

# 索引维护
B+树为了维护索引有序性,在插入新值的时候需要做必要的维护。如果插入新的行id值为700,则只需在R5的记录后面插入一条新记录。如果新插入的id值为400,需要逻辑上挪动后面的数据,空出位置。
如果一个数据页满了,按照B+Tree算法,新增加一个数据页,叫做页分裂,会导致性能下降。空间利用率降低大概50%。
当相邻的两个数据页利用率很低的时候会做数据页合并,合并的过程是分裂过程的逆过程。

Q:建表语句里为什么要有自增主键?
定义自增主键:NOT NULL PRIMARY KEY AUTO_INCREMENT
自增主键的插入模式,每次插入一条新记录,都是追加操作,不涉及到挪动其他记录,也不会触发叶子节点的分裂。
主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。
从性能和存储空间方面考量,自增主键往往是更合理的选择。

Q:有没有什么场景适合用业务字段直接做主键?
有,要求只有一个索引,并且该索引必须是唯一索引。

Q:对于上面表T,通过两个alter语句重建索引k,以及通过两个alter语句重建主键索引是否合理?

// 重建索引k
alter table T drop index k;
alter table T add index(k);
// 重建主键索引
alter table T drop primary key;
alter table T add primary key(id);

首先回答,为什么要重建索引?
    索引可能因为删除或者页分裂等原因,导致数据页有空洞,重建索引的过程会创建一个新的索引,把数据按顺序插入,
这样页面的利用率最高,也就是索引更紧凑、更省空间。
    重建索引k的做法是合理的,可以达到省空间的目的。但是重建主键的过程是不合理的。不论是删除主键还是创建主键,都会将整个表重建。所以连着执行这两个语句的话,第一个语句就白做了。这两个语句可以用这个语句代替:

alter table T engine=InnoDB

Q:下面的索引设置是否合理?

CREATE TABLE `geek` (
  `a` int(11) NOT NULL,
  `b` int(11) NOT NULL,
  `c` int(11) NOT NULL,
  `d` int(11) NOT NULL,
  PRIMARY KEY (`a`,`b`),
  KEY `c` (`c`),
  KEY `ca` (`c`,`a`),
  KEY `cb` (`c`,`b`)
) ENGINE=InnoDB;

由于历史原因,这个表需要a、b做联合主键,单独在字段c上创建一个索引,就已经包含了三个字段,为什么要创建"ca" "cb"这两个索引?业务里有这样的两个语句,这两个索引是否都是必须的?

select * from geek where c=N order by a limit 1;
select * from geek where c=N order by b limit 1;

结论:ca可以去掉,cb需要保留。
表记录
--a--|--b--|--c--
  1 2 3
  1 3 2
  1 4 3
  2 1 3
  2 2 2
  2 3 4
主键a, b的聚簇索引组织顺序相当于order by a, b,也就是先按a排序,再按b排序,c无序。

索引 ca 的组织是先按c排序,再按a排序,同时记录主键
–c--|–a--|–主键部分b-- (注意,这里不是ab,而是只有b)
  2 1 1
  2 2 2
  3 1 1
  3 1 1
  3 2 2
  4 2 2
由于主键的聚簇索引本身就是按order by a, b排序,无需重新排序,所以ca和索引c的数据是一模一样的。

索引 cb 的组织是先按c排序,再按b排序,同时记录主键
–c--|–b--|–主键部分a-- (同上)
  2 1 2
  2 3 1
  3 1 2
  3 2 1
  3 4 1
  4 3 2
order by b的顺序与主键顺序不一致,需要额外排序,cb索引可以把排序优化。

Q:普通索引和唯一索引,应该怎么选择?
从查询过程和更新过程来分析
一、查询过程
select id from T where k=5;
普通索引:查找到满足条件的第一个记录(5,500)后,需要查找下一个记录,直到碰到第一个不满足k=5条件的记录。
唯一索引:由于索引定义了唯一性,查找到第一个满足条件的记录后,就会停止继续检索。
InnoDB的数据是按数据页为单位来读写的,也就是说,当需要读一条记录的时候,是以页为单位,将其整体读入内存。InnoDB中,每个数据页的大小默认是16KB。
因为引擎是按页读写的,所以说,当找到k=5的记录时,它所在的数据页就都在内存里了。
对于普通索引,要多做的那一次"查找和判断下一条记录"的操作,就只需要一次指针寻址和一次计算。
因此,两者的性能差距是微乎其微的。

二、更新过程
在表中插入新记录(4,400),InnoDB的处理流程。
1、这个记录要更新的目标页在内存中
唯一索引:找到3和5之间的位置,判断到没有冲突,插入这个值,语句执行结束。
普通索引:找到3和5之间的位置,插入这个值,语句执行结束。
这种情况下,普通索引和唯一索引对更新语句性能影响的差别,只是一个判断,只会耗费微小的CPU时间。
2、这个记录要更新的目标页不在内存中
唯一索引:将数据页读入内存中,判断到没有冲突,插入这个值,语句执行结束。
普通索引:将更新记录在change buffer,语句执行结束。

# change buffer概念
    当需要更新一个数据页,如果数据页在内存中就直接更新,如果不在内存中,在不影响数据一致性的前提下,InnoDB会将这些更新操作缓存在change buffer中。下次查询需要访问到这个数据页的时候,将数据页读入内存,然后执行change buffer中的与这个页有关的操作。
change buffer是可以持久化的数据,在内存中有拷贝,也会被写入到磁盘上。
merge:把change buffer应用到旧的数据页,得到新的数据页的过程,称为merge。

Q:触发merge的几种情况:
1、访问到这个数据页
2、系统有后台线程会定期merge
3、数据库正常关闭(shutdown)的过程中,也会执行merge操作。

Q:merge的过程是否会把数据直接写会磁盘?
merge的流程:
1、从磁盘读入数据页到内存(老版本的数据页)
2、从change buffer里找出这个数据页的change buffer记录(可能有多个),依次应用,得到新版数据页。
3、写redo log。这个redo log包含了数据的变更和change buffer的变更。
到这里merge过程就结束了。这时候,数据页和内存中change buffer对应的磁盘位置都还没有修改,属于脏页,
之后各自刷回自己的物理数据,就是另外一个过程了。

    将更新操作先记录在change buffer,减少读磁盘,语句的执行速度会得到明显的提升,同时,数据读入内存是需要占用buffer pool的,所以这种方式还能够避免占用内存,提高内存利用率。
    change buffer用的是buffer pool里的内存,change buffer的大小,可以通过参数innodb_change_buffer_max_size来动态设置。这个参数设置为50的时候,表示change buffer的大小最多只能占用buffer pool的50%。

// 查看change buffer的设置
mysql> show variables like "innodb_change_buffer_max_size";
+-------------------------------+-------+
| Variable_name                 | Value |
+-------------------------------+-------+
| innodb_change_buffer_max_size | 25    |
+-------------------------------+-------+
1 row in set (0.01 sec)

# change buffer的使用场景
change buffer对更新过程起到加速作用。

(1)唯一索引的更新不能使用change buffer。
(2)主键索引不能使用change buffer。

    merge的时候是真正进行数据更新的时刻,change buffer的主要目的是将记录的变更动作缓存下来,所以在一个数据页做merge之前,change buffer记录的变更越多(也就是这个页面上要更新的次数越多),收益就越大。
    对于写多读少的业务来说,页面在写完以后马上被访问到的概率比较小,此时change buffer的使用效果最好。(账单类、日志类的系统)。相反,一个业务的更新模式是写入之后马上做查询,change buffer反而起到了副作用。
原因是,将更新先记录在change buffer,但之后马上要访问这个数据页,会立即出发merge过程。这样随机访问IO的次数不会减少,反而增加了change buffer的维护代价。

# change buffer和redo log

insert into t(id,k) values(id1,k1),(id2,k2);

假设当前k索引树的状态,查找位置后,k1所在的数据页在内存中(InnoDB buffer pool)中,k2所在的数据页不在内存中。

执行这条更新语句的成本很低,就是写了两处内存,然后写了一处磁盘(两次操作合在一起写了一次磁盘),而且还是顺序写的。

Q:如果某次写入使用了change buffer机制,之后主机异常重启,是否会丢失change buffer和数据?
虽然是只更新内存,但是在事务提交的时候,change buffer的操作记录到redo log里了,所以崩溃恢复的时候,change buffer也能找回来。
redo log主要节省的是随机写磁盘的IO消耗(转成顺序写),而change buffer主要节省的则是随机读磁盘的IO消耗。

# MySQL有时候为什么会选错索引?
    选择索引是优化器的工作。优化器选择索引考虑的因素:扫描行数、是否使用临时表、是否排序等。
优化器选择索引的目的,是找到一个最优的执行方案,并用最小的代价去执行语句。在数据库里,扫描行数是影响执行代价的因素之一。扫描的行数越少,意味着访问磁盘数据的次数越少,消耗的CPU资源越少。

Q:扫描行数是怎么判读的?
MySQL根据统计信息来估算记录数。统计信息就是索引的"区分度"。一个索引上不同的值的个数,称为基数(Cardinality)。这个基数越大,索引的区分度越好。

Q:MySQL是怎样得到索引的基数呢?
MySQL采用采样统计。InnoDB默认会选择N个数据页,统计这些页面上的不同值,得到一个平均值,然后乘以这个索引的页面数,就得到了这个索引的基数。
数据表是会持续更新的,索引统计信息也不会固定不变。所以,当变更的数据行数超过1/M时,会自动触发重新做一次索引统计。
MySQL中有两种存储索引统计的方式,通过参数innodb_stats_persistent控制。
设置为on,表示统计信息会持久化存储。默认的N是20,M是10。
设置为off,表示统计信息只存储在内存中。这时,默认的N是8,M是16。

mysql> show variables like "innodb_stats_persistent";
+-------------------------+-------+
| Variable_name           | Value |
+-------------------------+-------+
| innodb_stats_persistent | ON    |
+-------------------------+-------+
1 row in set (0.36 sec)
// 查看索引的基数
mysql> show index from t;
+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| t     |          0 | PRIMARY  |            1 | id          | A         |      100421 |     NULL | NULL   |      | BTREE      |         |               |
| t     |          1 | a        |            1 | a           | A         |      100421 |     NULL | NULL   | YES  | BTREE      |         |               |
| t     |          1 | b        |            1 | b           | A         |      100421 |     NULL | NULL   | YES  | BTREE      |         |               |
+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
3 rows in set (0.11 sec)

Q:索引选择异常时如何处理?
1、采用force index强行选择一个索引
2、修改语句,引导MySQL使用我们期望的索引
3、在某些场景下,我们可以新建一个更合适的索引,来提供给优化器做选择,或者删掉误用的索引。

    MySQL会根据词法解析的结果分析出可能可以使用的索引作为候选项,然后在候选列表中依次判断每个索引需要扫描多少行。如果force index指定的索引在候选索引列表中,就直接选择这个索引,不再评估其他索引的执行代价。

使用analyze table table_name;命令,可以用来重新统计索引信息。

Q:怎么给字符串字段加索引?
1、直接创建完整索引,这样可能比较占用空间。
2、创建前缀索引,节省空间,但会增加查询扫描次数,并且不能使用覆盖索引。
3、倒序存储,再创建前缀索引,用于绕过字符串本身前缀的区分度不够的问题。
4、创建hash字段索引,查询性能稳定,有额外的存储和计算消耗。
第3、4种方式不支持范围扫描。
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值