LeetCode - 1049. 最后一块石头的重量 II

描述

有一堆石头,每块石头的重量都是正整数。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0。

 

示例:

输入:[2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。
 

提示:

1 <= stones.length <= 30
1 <= stones[i] <= 1000

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/last-stone-weight-ii/

求解

分析

转换为01背包问题
考虑将石头分成两堆,且满足两堆的差值尽肯能小甚至完全相等,则粉碎后最小差值就满足条件(请理解)
假设石头总量为sum, 石头的一半为half, 则我们需要采用一个策略装石头,尽可能装到half, 即背包容量为half
转换后的01背包问题为,石头重量s[i], 价值为s[i], 背包容量为half
根据01背包的状态转移方程,dp[i][j]表示背包容量为j时,前i个物品的的最佳组合对应价值
1)如果j < s[i], 即s[i]无法添加到背包中,则dp[i][j] = dp[i-1][j]
2)如果j >= s[i], 即s[i]可以添加到背包中,则dp[i][j] = max(dp[i-1][j], dp[i-1][j-s[i]] + s[i])

  class Solution {
    public:
        // 转换为01背包问题
        // 考虑将石头分成两堆,且满足两堆的差值尽肯能小甚至完全相等,则粉碎后最小差值就满足条件(请理解)
        // 假设石头总量为sum, 石头的一半为half, 则我们需要采用一个策略装石头,尽可能装到half, 即背包容量为half
        // 转换后的01背包问题为,石头重量s[i], 价值为s[i], 背包容量为half
        // 根据01背包的状态转移方程,dp[i][j]表示背包容量为j时,前i个物品的的最佳组合对应价值
        // 1)如果j < s[i], 即s[i]无法添加到背包中,则dp[i][j] = dp[i-1][j]
        // 2)如果j >= s[i], 即s[i]可以添加到背包中,则dp[i][j] = max(dp[i-1][j], dp[i-1][j-s[i]] + s[i])
        // 注:采用二维数据定义状态转移方程
        int lastStoneWeightII_(const vector<int> &stones) {
            if (stones.empty()) {
                return 0;
            }
            int sum = std::accumulate(stones.cbegin(), stones.cend(), 0);  // 石头重量和
            int half = sum / 2;
            const int n = stones.size();
            vector<vector<int>> dp(n + 1, vector<int>(half + 1, 0));  // dp[n+1][half+1]全部初始化为0
            for (int i = 1; i <= n; ++i) {
                int curStone = stones[i - 1];
                for (int j = 1; j <= half; ++j) {
                    dp[i][j] = std::max(dp[i][j], dp[i - 1][j]);
                    if (j >= curStone) {
                        // 满足2)场景,即j >= s[i]
                        dp[i][j] = std::max(dp[i - 1][j], dp[i - 1][j - curStone] + curStone);
                    }
                }
            }
            return sum - 2 * dp[n][half]; // 通过01背包问题已求得逼近half的最大重量,则sum - 2*最大重量即为满足条件的结果
        }

        int lastStoneWeightII(const vector<int> &stones) {
        }
    };

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值