1.初始化数据:
创建一元二次函数: y = a * x^2 + b, 给 y 数据加上一点噪声来更加真实.
import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt #画图
x1 = torch.linspace(-1, 1, 100)
x = torch.unsqueeze(x1, dim=1) # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size()) # noisy y data (tensor), shape=(100, 1)
# 用 Variable 来修饰这些数据 tensor
x, y = torch.autograd.Variable(x), Variable(y)
# 画图
print('\nx1:',x1.size())
print('\nx:',x.size())
plt.scatter(x.data.numpy(), y.data.numpy())
plt.show()
关于torch.unsqueeze(),改变维度
2.建立神经网络
建立一个神经网络我们可以直接运用 torch 中的体系. 先定义所有的层属性(__init__()), 然后再一层层搭建(forward(x))层于层的关系链接. 使用这种方法的时候这两个层都会存在。
import torch
import torch.nn.functional as F # 激励函数都在这
class Net(torch.nn.Module): # 继承 torch 的 Module
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__() # 继承 __init__ 功能
# 定义每层用什么样的形式
self.hidden = torch.nn.Linear(n_feature, n_hidden) # 隐藏层线性输出
self.predict = torch.nn.Linear(n_hidden, n_output) # 输出层线性输出
def forward(self, x): # 这同时也是 Module 中的 forward 功能
# 正向传播输入值, 神经网络分析出输出值
x = F.relu(self.hidden(x)) # 激励函数(隐藏层的线性值)
x = self.predict(x) # 输出值
return x
net = Net(n_feature=1, n_hidden=10, n_output=1)
print(net) # net 的结构
"""
Net (
(hidden): Linear (1 -> 10)
(predict): Linear (10 -> 1)
)
"""
3.训练网络
# optimizer 是训练的工具
optimizer = torch.optim.SGD(net.parameters(), lr=0.5) # 传入 net 的所有参数, 学习率
loss_func = torch.nn.MSELoss() # 预测值和真实值的误差计算公式 (均方差)
for t in range(100):
prediction = net(x) # 给 net 训练数据 x, 输出预测值
loss = loss_func(prediction, y) # 计算两者的误差
optimizer.zero_grad() # 清空上一步的残余更新参数值
loss.backward() # 误差反向传播, 计算参数更新值
optimizer.step() # 将参数更新值施加到 net 的 parameters 上
4.可视化训练过程
import matplotlib.pyplot as plt #在最开始引入
plt.ion() # 画图设置成实时打印过程
plt.show()
for t in range(100):
...
loss.backward()
optimizer.step()
# 接着上面来,没五个循环展示一次
if t % 5 == 0:
# plot and show learning process
plt.cla()
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.text(0.5, 0, 'Loss=%.4f' % loss.data[0], fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1)
plt.ioff
plt.show()
如果在脚本中使用ion()命令开启了交互模式,没有使用ioff()关闭的话,则图像会一闪而过,并不会常留。要想防止这种情况,需要在plt.show()之前加上ioff()命令。
参考:
https://blog.csdn.net/SZuoDao/article/details/52973621
http://pytorch-cn.readthedocs.io/zh/latest/package_references/torch/
https://morvanzhou.github.io/tutorials/machine-learning/torch/3-01-regression/