i\j | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
0 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 1 | 0 | 0 |
这个算法的运行时间是O(V)
- 首先,a[i][i]=0,因此算法走过的路径都在主对角线及以上
- 若a[i][j]=1,说明i有出度,i不是通用汇点
- 若a[i][j]=0且i!=j,说明j的入度不是v-1,j不是汇点
- 设算法走过路径每个L行转折点为pk=(ik,jk)//k=1…m,i1=j1=0
- 那么0..im-1都不是,且j[k-1]+1…j[k]-1都不是
- 那么对于ik=jk(k小于m)的点,由于ik小于im,所以j也不是那么在考虑pm之前,0..im-1都不是,0..jm-1,jm+1..v也都不是,于是只有im=jm,才有可能存在通用汇点,且是i,易知通用汇点如果存在就是唯一的
#include<stdio.h>
#include<stdlib.h>
int unviversalsink(short **a,int v)
{
int i=0,j=0;
while ((i<v)&&(j<v))
if (a[i][j]==1)
i++;
else
j++;
if (i<v)
{
for (j=0;j<v;j++)
if (a[i][j]==1)
return -1;
for (j=0;j<v;j++)
if ((i!=j)&&(a[j][i]!=1))
return -1;
return i;
}
}
int main(void)
{
short **a;
int v,e,i,j,x,y,ans;
scanf("%d%d",&v,&e);
a=(short **)malloc(sizeof(short *)*v);
for (i=0;i<v;i++)
{
a[i]=(short *)malloc(sizeof(short)*v);
for (j=0;j<v;j++)
a[i][j]=0;
}
for (i=1;i<=e;i++)
{
scanf("%d%d",&x,&y);
a[x][y]=1;
}
ans=unviversalsink(a,v);
if (ans==-1)
printf("no answer\n");
else
printf("%d\n",ans);
return 0;
}