poj 2253 frogger

题目衔接:http://poj.org/problem?id=2253


题解:求出图中两点所有路径中权值最大数中的最小值,即可简化为求最小生成树中的距离最大值


AC代码:

Memory: 584K   Time: 16MS
Language: C++  Result: Accepted
#include <iostream>
#include <stack>
#include <cstring>
#include <cmath>
#include <set>
#include <cstdio>

using namespace std;

#define maxn 210
#define max 1000000

typedef struct stone{
	int x;
	int y;
}stone;

stone data[maxn];
double dis[maxn][maxn];
bool is_in_set[maxn];

int main()
{
	int stones,cases=1;
	while(cin>>stones && stones){
		memset(data,0,sizeof(data));
		memset(is_in_set,false,sizeof(is_in_set));

		int n = stones;

		stone start,end,temp;
		cin>>start.x>>start.y;
		cin>>end.x>>end.y;
		n -= 2;
		data[0] = start;
		data[1] = end;
		int i=2;
		while(n){
			cin>>temp.x>>temp.y;
			data[i] = temp;
			i++,n--;
		}
				
		for(int i=0;i<stones;i++){                    //计算每两个节点之间的距离
			int a,b,c,d;
			a = data[i].x,b = data[i].y;
			for(int j=0;j<stones;j++){
					c = data[j].x,d = data[j].y;
					dis[i][j] = sqrt(double((a-c)*(a-c)+(b-d)*(b-d)));
			}
		}
		set<int> jumped;
		double max_jump;
		max_jump = 0;

		is_in_set[0] = true;
		jumped.insert(0);
		int start_node,next_node;
		while(1){
			set<int>::iterator set_it = jumped.begin();
		        double min = 1<<20;
			while(set_it != jumped.end()){                  //寻找下一个离集合最近的点
				for(int i=0;i<stones;i++){
					if( !is_in_set[i] && dis[*set_it][i] < min){
						start_node = *set_it;
						min = dis[*set_it][i];
						next_node = i;
					}
				}
				set_it++;
			}
			is_in_set[next_node] = true;
			jumped.insert(next_node);
			if( dis[start_node][next_node] > max_jump )
				max_jump = dis[start_node][next_node];
			if(next_node == 1)                   //到达目的节点,退出循环
				break;	
		}
		printf("Scenario #%d\nFrog Distance = %.3f\n\n",cases,max_jump);
		cases++;
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值