题目链接:bzoj3105
题目大意:
传统的Nim游戏:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同)。两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴。可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿。拿走最后一根火柴的游戏者胜利。
本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴。可以一堆都不拿,但不可以全部拿走。第二回合也一样,第二个游戏者也有这样一次机会。从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样。
如果你先拿,怎样才能保证获胜?如果可以获胜的话,还要让第一回合拿的火柴总数尽量小。
题解:
线性基+异或高斯消元
后手要想先手输,那么就要留一个Nim游戏的必败态(即异或和为0)给先手开局。所以先手若不想让后手得逞,那么第一步操作后留给后手的状态一定满足任意子集异或和不为0。
就相当于弄个线性基出来。
要想一开始拿的火柴尽量小,即使线性基尽量大
于是先从大到小排个序,动态插入就好了。
哦至于不能保证取胜输出-1的情况,经讨论,嗯应该是不存在的。因为无论怎么样,你一开始拿剩一堆给后手,后手因为有不能拿完这个规定那他这轮就不能动。Nim开始的时候直接拿完就赢了。如果一开始就只有一堆,大家第一轮都不拿就好啦。
这些题要么卡精度要么就要开LL。。诶WA得我啊
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
#define maxn 110
int n;LL ans,a[maxn],p[maxn];
bool cmp(LL x,LL y){return x>y;}
void gauss()
{
for (int i=1;i<=n;i++)
{
LL now=a[i];
for (int j=30;j>=0;j--)
if ((a[i]>>j)&1)
{
if (!p[j])
{
p[j]=a[i];
break;
}else a[i]^=p[j];
}
if (a[i]) ans+=now;
}
}
int main()
{
//freopen("a.in","r",stdin);
//freopen("a.out","w",stdout);
int i;LL sum=0;
scanf("%d",&n);
for (i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
sum+=a[i];
}sort(a+1,a+1+n,cmp);
ans=0;gauss();
printf("%lld\n",sum-ans);
return 0;
}