bzoj3105 [cqoi2013]新Nim游戏

题目链接:bzoj3105

题目大意:
传统的Nim游戏:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同)。两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴。可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿。拿走最后一根火柴的游戏者胜利。
本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴。可以一堆都不拿,但不可以全部拿走。第二回合也一样,第二个游戏者也有这样一次机会。从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样。
如果你先拿,怎样才能保证获胜?如果可以获胜的话,还要让第一回合拿的火柴总数尽量小。

题解:
线性基+异或高斯消元
后手要想先手输,那么就要留一个Nim游戏的必败态(即异或和为0)给先手开局。所以先手若不想让后手得逞,那么第一步操作后留给后手的状态一定满足任意子集异或和不为0。
就相当于弄个线性基出来。
要想一开始拿的火柴尽量小,即使线性基尽量大
于是先从大到小排个序,动态插入就好了。

哦至于不能保证取胜输出-1的情况,经讨论,嗯应该是不存在的。因为无论怎么样,你一开始拿剩一堆给后手,后手因为有不能拿完这个规定那他这轮就不能动。Nim开始的时候直接拿完就赢了。如果一开始就只有一堆,大家第一轮都不拿就好啦。

这些题要么卡精度要么就要开LL。。诶WA得我啊

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
#define maxn 110

int n;LL ans,a[maxn],p[maxn];
bool cmp(LL x,LL y){return x>y;}
void gauss()
{
    for (int i=1;i<=n;i++)
    {
        LL now=a[i];
        for (int j=30;j>=0;j--)
          if ((a[i]>>j)&1)
          {
              if (!p[j])
              {
                  p[j]=a[i];
                  break;
              }else a[i]^=p[j];
          }
        if (a[i]) ans+=now;
    }
}
int main()
{
    //freopen("a.in","r",stdin);
    //freopen("a.out","w",stdout);
    int i;LL sum=0;
    scanf("%d",&n);
    for (i=1;i<=n;i++)
    {
        scanf("%lld",&a[i]);
        sum+=a[i];
    }sort(a+1,a+1+n,cmp);
    ans=0;gauss();
    printf("%lld\n",sum-ans);
    return 0;
}
weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值