算法导论 5.3-5

1 问题

证明程序PERMUTE-BY-SORTING的数组P中,所有元素都唯一的概率至少为1-1/n。

2 分析与解答

证明:

P{所有元素都唯一} = n3(n3 -1)(n3 -2)…(n3 - n+1) / (n3)n

= 1 * (n3 -1)/n3 * (n3 -2)/n3 …(n3 -n+1)/n3

= 1*(1- 1/n3 )(1- 2/n3 )…(1- (n-1)/n3 )

>= (1 - n/n3 )(1 - n/n3 )(1 - n/n3 )…(1 - n/n3 )

= (1 - 1/n2 )n

= ∑k=0 n Cn k (-1/n2 )n-k

= Cn n + Cn n-1 (-1/n2) + ∑k=0 n-2 Cn k (-1/n2 )n-k

= 1 - 1/n +∑k=0 n-2 Cn k (-1/n2 )n-k

当n为奇数时,∑k=0 n-2 Cn k (-1/n2 )n-k,k为奇数的项为正,并且显然k为奇数项的n的次数,大于k为偶数的项,表明随着n的增长,当n大于某数时,上式必定为正,由于上式是个增函数,又因为当n=3时,上式大于0,所以当n>3时,上式必定大于0。

当n为偶数时,∑k=0 n-2 Cn k (-1/n2 )n-k = 1 + ∑k=1 n-2Cn k (-1/n2 )n-k,同理∑k=1 n-2Cn k (-1/n2 )n-k用上面的分析方法也能得到一定为正的结论。

综上,∑k=0 n-2 Cn k (-1/n2 )n-k当n>=2时,大于0。

当n=1是,(1-1/n2 )n = 0 = (1-1/n),所以,P{所有元素都唯一} >= (1 - 1/n2 )n >= 1 - 1/n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值