问题 证明等式(3.18)。并证明 和 分析 证明: 显然当n>=2时, 所以 所以 根据斯特林公式,可得 所以---(1) 根据渐近确界的定义,还需要找到c1,n0,使当n>=n0时,0<=c1nlg(n)<= lg(n!) 根据式(1),若lg(n/e)>=c1lgn---(2),则可得c1nlg(n)<= lg(n!)满足渐近确界定义 所以由式2得---(3) 所以可以取任意c1<1的正实数,满足式2,我们取c1为1/2,则由式(3)得当 时, 0<=c1nlg(n)<= lg(n!) 又因为我们已经证明当n>=2时, 综上,证明了当 时,有 根据斯特林公式,可得 由于当n>2e时, 是单调增函数 所以对于任意正常数c,不论c多大,总是存在n0,使当n>=n0时, 所以在这种情况下,存在 即 根据斯特林公式,并且当n为整数时 因为多项式函数比指数函数增长的慢,是单调递减函数且大于0 所以,对于任意正常数c,不论c多小,都存在n0,当n>=n0时, 所以在这种情况下,存在 即