算法导论 3.2-3

问题

证明等式(3.18)。并证明

分析

证明:
  1. 显然当n>=2时,
    所以
    所以
    根据斯特林公式,可得
    所以---(1)
    根据渐近确界的定义,还需要找到c1,n0,使当n>=n0时,0<=c1nlg(n)<= lg(n!)
    根据式(1),若lg(n/e)>=c1lgn---(2),则可得c1nlg(n)<= lg(n!)满足渐近确界定义
    所以由式2得---(3)
    所以可以取任意c1<1的正实数,满足式2,我们取c1为1/2,则由式(3)得当 时, 0<=c1nlg(n)<= lg(n!)
    又因为我们已经证明当n>=2时,
    综上,证明了当 时,有 
  2. 根据斯特林公式,可得

    由于当n>2e时, 是单调增函数
    所以对于任意正常数c,不论c多大,总是存在n0,使当n>=n0时,
    所以在这种情况下,存在
  3. 根据斯特林公式,并且当n为整数时

    因为多项式函数比指数函数增长的慢,是单调递减函数且大于0
    所以,对于任意正常数c,不论c多小,都存在n0,当n>=n0时,
    所以在这种情况下,存在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值