
Python超入门
文章平均质量分 95
限时19.9,即可查阅学习本专栏全部内容。全网最细Python零基础手把手入门教程,全栈系列课程包括:基础篇、进阶篇、爬虫篇、数据分析篇、可视化篇、实用脚本篇等,适合零基础和进阶提升的同学。(专栏内文章会随时效而更新全文内容,最终会全部更新转化为python高质量知识学习文章,请知悉)
优惠券已抵扣
余额抵扣
还需支付
¥19.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
程序员Gloria
多年实战经验,致力于解决广大程序员的问题,文章内基本都有关键核心代码,欢迎学习。
展开
-
实现一个基于时间戳的版本控制系统,用于存储文件的多个版本【基于python实现】
我们将创建一个系统,它允许用户将文件的多个版本保存到指定的目录中,并通过时间戳来标识每个版本。这样,用户可以随时查看、恢复或删除文件的历史版本。文件的版本保存:基于文件的修改时间创建时间戳,并将文件保存为不同版本。版本的查看:查看当前目录下的所有版本,基于时间戳排序。版本的恢复:恢复某一时间点的文件版本。原创 2025-03-19 22:14:56 · 1448 阅读 · 38 评论 -
设计一个分布式缓存系统,支持数据持久化和数据一致性【基于Python实现】
分布式架构:缓存数据分布在多个节点上,以应对大规模数据存储。数据持久化:确保即使系统崩溃,缓存的数据也不会丢失。数据一致性:确保缓存数据在多个节点之间保持一致性。高可用性:系统具备高可用性,能够容忍部分节点宕机。Redis:用作缓存引擎,支持高效的读写和持久化。Pythonthreading模块:用于实现节点之间的并发操作。RocksDB:作为数据持久化存储层,用于保存持久化数据。原创 2025-03-19 22:04:09 · 749 阅读 · 6 评论 -
提升大数据文件合并效率:基于Python的多线程与去重优化【合并多个已排序的文件数据算法实现】
合并多个已排序文件数据的核心问题是,如何在保证时间效率的情况下,将多个排序好的数据合并为一个全局有序的数据流。原创 2025-03-19 15:13:05 · 1141 阅读 · 1 评论 -
基于LRU算法的高效缓存管理与Python实现【LRU缓存淘汰策略的原理与应用】
虽然 LRU 是一种常见的缓存淘汰策略,但它并不适用于所有场景。根据应用的需求,可以根据具体情况修改缓存淘汰的规则。例如,我们可以基于访问频率、数据大小等因素来设计更复杂的缓存策略。除了基于使用频率和时间顺序来淘汰缓存外,还可以根据自定义的优先级来决定缓存中的数据。例如,可以为某些数据分配较高的优先级,使其更不容易被淘汰。return -1# 选择最小优先级的元素进行淘汰LRU 缓存算法在很多领域中都有着重要的应用,尤其是在需要频繁访问数据的场景中,通过高效的缓存淘汰策略,能够显著提升系统的性能。原创 2025-03-19 14:57:50 · 1483 阅读 · 0 评论 -
Python中正则表达式的应用与优化基础、操作与高级技巧
在本文中,我们详细探讨了 Python 中正则表达式的基础和高级用法,从简单的匹配、查找、替换到断言、优化技巧及多行匹配等多个方面进行了深入讲解。正则表达式是一个强大的文本处理工具,掌握它的使用能够显著提高工作效率。希望这篇完整的指南能够帮助你更好地理解和应用正则表达式,提升你在 Python 中处理文本的能力。原创 2025-01-25 18:31:08 · 429 阅读 · 0 评论 -
基于Python的自动化测试框架设计与实现
本文深入探讨了如何使用Python搭建一个高效、可扩展的自动化测试框架。基础环境搭建:首先,安装了必要的库(如seleniumunittest和pytest),并配置了WebDriver,成功实现了基础的Web自动化测试。编写基本的测试用例:使用unittest编写了基础的单元测试,并引入了selenium进行网页自动化测试,演示了如何进行登录验证等操作。高级功能实现数据驱动测试:使用让同一个测试用例支持多组不同数据,提高测试效率。页面对象模型(POM)原创 2025-01-25 03:51:52 · 843 阅读 · 0 评论 -
机器学习入门利用Python构建预测模型以实现房价预测
该模型的核心是建立一个多目标优化模型,通过平衡经济、环境和社会因素来实现可持续旅游。变量定义:明确影响旅游业的关键变量。目标函数:设定优化目标。约束条件:定义可行解空间。政策影响:引入不同的税收和政策对模型的反馈影响。敏感性分析:分析关键参数对模型输出的影响。VVV:每日游客数量(人)。RRR:每日旅游收入(美元)。EEE:每日碳排放量(吨)。CCC:每日基础设施维护成本(美元)。SSS:居民满意度(1-10 分)。原创 2025-01-25 03:48:49 · 837 阅读 · 0 评论 -
深入理解Python装饰器-原理、应用与最佳实践
装饰器本质上是一个函数,它接受一个函数作为输入,并返回一个新函数。通过装饰器,我们可以在不修改原始函数的情况下,动态地扩展其功能。在这篇文章中,我们深入探讨了 Python 装饰器的基本用法以及在实际开发中的应用场景。装饰器不仅能够帮助我们简化代码结构,还能增强代码的功能性和可复用性。通过理解装饰器的工作原理,并应用到性能优化、权限管理、异常处理等领域,开发者能够更加灵活地应对复杂的编程需求。原创 2025-01-24 16:00:52 · 604 阅读 · 0 评论 -
从零开始构建Python Web爬虫实践与优化
Web爬虫(也称为网络蜘蛛或抓取器)是一种自动化程序,模拟浏览器访问网页并从中提取信息。Web爬虫的基本工作流程包括:发送 HTTP 请求获取网页内容、解析网页内容、提取需要的数据、将数据存储或进一步处理。本篇文章详细介绍了如何从零开始构建一个简单的 Python Web 爬虫,包括如何抓取静态网页、如何处理动态网页、如何存储数据、如何优化爬虫效率等内容。通过实践这些技术,您将能够构建一个高效、功能强大的爬虫,来抓取互联网上的各种有价值数据。我们从零开始构建了一个简单的 Python Web 爬虫,使用。原创 2025-01-24 15:51:50 · 1149 阅读 · 0 评论 -
基于SQLAlchemy ORM的数据库操作与最佳实践探究
SQLAlchemy ORM(Object Relational Mapper)是一个使Python类与数据库表之间建立映射关系的工具,它将数据库中的数据行转换为Python对象,允许我们以面向对象的方式进行数据库操作。ORM使得开发者能够使用Python代码来处理数据库,而不必直接编写SQL语句,从而提高开发效率并减少出错的机会。SQLAlchemy ORM提供了强大且灵活的数据库操作方式,能够帮助开发者快速构建和管理复杂的数据模型。原创 2025-01-24 15:44:47 · 720 阅读 · 0 评论 -
Pandas数据清洗与处理优化数据质量的技术与最佳实践
Pandas是Python中一个强大的数据处理和分析库,提供了数据清洗、数据分析和数据可视化等功能。它的核心数据结构是DataFrame,类似于一个表格或数据库表,是二维的带标签数据结构。Pandas为我们提供了丰富的函数库,可以高效地进行数据清洗、转换、聚合和可视化。apply函数是Pandas中一个非常有用的函数,允许我们将自定义的函数应用于DataFrame的列或行。通过apply,我们可以实现非常灵活的数据处理。按行应用自定义函数# 自定义一个函数,计算员工的年薪按列应用自定义函数。原创 2025-01-24 15:40:40 · 723 阅读 · 0 评论 -
基于Matplotlib与Seaborn的专业数据可视化技术及应用分析
Matplotlib允许我们自定义图表的样式,例如背景色、网格线、字体、颜色等。Seaborn也提供了更简便的方式来改变整体风格。颜色的选择对于图表的可视化效果至关重要。Seaborn提供了多种内置的配色方案,帮助我们快速实现色彩的自定义。同时,Matplotlib也允许我们手动设置颜色。除了内建的配色方案,我们还可以在Matplotlib和Seaborn中直接指定具体的颜色。# 数据# 自定义颜色# 添加标题# 显示图表plt.show()我们通过直接指定了图表的颜色。原创 2025-01-24 12:12:04 · 687 阅读 · 0 评论 -
动态计算图与 Python:深度解析 PyTorch Autograd 机制
在深度学习的世界中,计算图(Computation Graph)是理解自动求导(Autograd)机制的关键。PyTorch 采用(Dynamic Computational Graph,DCG)作为其核心特性之一,使得模型训练和调试更加灵活。在这篇文章中,我们将深入解析 PyTorch 的 Autograd 机制,并通过代码示例帮助你掌握其核心原理。原创 2025-01-24 12:07:38 · 5458 阅读 · 0 评论 -
Python 在自监督学习中的应用-从 SimCLR 到 BYOL 的演进
自监督学习是一种无监督学习方法,利用数据内部的关联性构造学习目标,而无需人工标注。对比学习(Contrastive Learning):通过正样本(同一图像的不同增强视图)和负样本(不同图像)之间的相似性进行训练。自回归方法(Autoregressive Models):预测数据的未来部分,如 BERT 在 NLP 领域的应用。生成式方法(Generative Methods):如 GAN 和 VAE。其中,对比学习是计算机视觉中最常见的自监督方法。原创 2025-01-24 12:05:08 · 3217 阅读 · 0 评论 -
Python中的生成器与协程
生成器和协程是Python提供的两大强大工具,它们能够在处理大量数据和高并发任务时显著提升程序的性能。通过本文的讲解和示例,相信你已经掌握了如何在实际项目中运用这两种技术来优化程序的效率。无论是在Web爬虫、文件处理,还是实时数据流的应用中,生成器和协程都能为你的代码带来显著的性能提升。原创 2025-01-11 11:46:58 · 281 阅读 · 0 评论 -
SQLAlchemy的ORM的最佳实践
SQLAlchemy ORM(Object Relational Mapper)是一个使Python类与数据库表之间建立映射关系的工具,它将数据库中的数据行转换为Python对象,允许我们以面向对象的方式进行数据库操作。ORM使得开发者能够使用Python代码来处理数据库,而不必直接编写SQL语句,从而提高开发效率并减少出错的机会。SQLAlchemy ORM提供了强大且灵活的数据库操作方式,能够帮助开发者快速构建和管理复杂的数据模型。原创 2025-01-11 11:45:01 · 403 阅读 · 0 评论 -
零基础学习Python Web爬虫指南-python手册
Web爬虫(也称为网络蜘蛛或抓取器)是一种自动化程序,模拟浏览器访问网页并从中提取信息。Web爬虫的基本工作流程包括:发送 HTTP 请求获取网页内容、解析网页内容、提取需要的数据、将数据存储或进一步处理。本篇文章详细介绍了如何从零开始构建一个简单的 Python Web 爬虫,包括如何抓取静态网页、如何处理动态网页、如何存储数据、如何优化爬虫效率等内容。通过实践这些技术,您将能够构建一个高效、功能强大的爬虫,来抓取互联网上的各种有价值数据。我们从零开始构建了一个简单的 Python Web 爬虫,使用。原创 2025-01-11 11:43:19 · 348 阅读 · 0 评论 -
Python中的多线程与多进程指南
在Python中,进行性能优化时,我们常常会碰到需要同时执行多个任务的情况。这个时候,使用多线程或多进程技术可以显著提高程序的执行效率。然而,由于Python的全局解释器锁(GIL)的存在,多线程并不能在所有情况下提供预期的性能提升。本文将深入探讨Python中的多线程与多进程,分析它们的适用场景,并通过代码实例展示它们的正确使用方法。原创 2025-01-10 02:30:43 · 622 阅读 · 0 评论 -
选择合适的Web框架-Flask与FastAPI
Flask是一个轻量级的Web框架,设计上非常简单和易于扩展。它并不强制使用任何特定的项目结构或工具,这使得开发者能够根据自己的需求自由地设计应用。Flask的灵活性使它成为了许多小型项目和原型开发的理想选择。FastAPI是一个现代的Web框架,基于Python 3.7+,专为构建API而设计。FastAPI的特点是高性能、支持异步操作,并且内置了许多现代Web应用所需的功能,如数据验证和自动生成API文档等。从性能角度看,FastAPI在高并发场景下具有明显优势,特别是在I/O密集型的应用中。原创 2025-01-10 02:28:53 · 648 阅读 · 0 评论 -
Python中的正则表达式完全指南
在本文中,我们详细探讨了 Python 中正则表达式的基础和高级用法,从简单的匹配、查找、替换到断言、优化技巧及多行匹配等多个方面进行了深入讲解。正则表达式是一个强大的文本处理工具,掌握它的使用能够显著提高工作效率。希望这篇完整的指南能够帮助你更好地理解和应用正则表达式,提升你在 Python 中处理文本的能力。原创 2025-01-10 02:22:38 · 501 阅读 · 0 评论 -
Python自动化入门-从文件管理到网络请求的全方位应用
自动化是指使用技术手段减少人工干预,以提高效率和减少错误。通过自动化重复的任务,员工可以将精力集中在更高价值的工作上。Python通过其丰富的库和框架,能够帮助用户轻松实现任务自动化。在当今快速发展的工作环境中,自动化已成为提高工作效率的关键工具。Python凭借其简洁的语法和丰富的库支持,提供了强大的自动化解决方案,涵盖了多个领域,包括文件管理、电子邮件发送、数据处理、网页爬虫、定时任务以及与API的交互。文件管理:使用Python脚本批量处理文件,如重命名和整理,从而减少手动操作的时间和错误。原创 2024-11-21 16:55:55 · 1893 阅读 · 0 评论 -
提升代码质量-Python中的单元测试与unittest框架详解
单元测试是一种白盒测试方法,旨在对软件的最小可测试单元(通常是函数或方法)进行验证。提高代码的可靠性。确保代码在重构或修改后仍能正常工作。帮助开发人员理解代码的功能。原创 2024-11-21 16:51:02 · 1580 阅读 · 0 评论 -
深度学习实战-使用TensorFlow与Keras构建智能模型
深度学习是机器学习的一个分支,使用多层神经网络来学习和表示数据中的复杂模式。其广泛应用于图像识别、自然语言处理、推荐系统等领域。通过本文的学习,你已经掌握了在Python中使用TensorFlow和Keras实现深度学习的基本知识。我们从简单的全连接神经网络入手,逐步深入到卷积神经网络、迁移学习等先进技术,并探讨了模型评估与可视化、模型的保存与加载等重要主题。此外,我们还简要介绍了深度学习在自然语言处理、音频分析和推荐系统中的应用。未来,深度学习将在越来越多的领域发挥更大的作用。原创 2024-11-21 16:46:44 · 1128 阅读 · 0 评论 -
API数据抓取入门-使用Python Requests库的实用指南
API是一组定义和协议,使得不同软件应用程序之间能够相互通信。通过API,开发者可以访问某个服务提供的功能,而无需了解其内部实现。例如,社交媒体平台、天气服务、金融数据提供商等都提供了API供开发者使用。Requests是一个简单易用的Python库,专门用于发送HTTP请求。它能够处理GET、POST、PUT、DELETE等请求方法,并支持会话、认证、文件上传等功能。在与API交互时,Requests库是一个非常流行且高效的选择。原创 2024-11-21 16:42:05 · 1986 阅读 · 0 评论 -
探索数据可视化-如何用Matplotlib与Seaborn呈现美观图表
Matplotlib是Python中最基础的数据可视化库,提供了丰富的绘图功能。无论是基本的折线图、柱状图,还是复杂的多图表布局,Matplotlib都能满足需求。Seaborn提供了丰富的调色板,允许用户根据需求自定义颜色。使用调色板可以增强图表的视觉效果。# 自定义调色板plt.show()原创 2024-11-21 16:07:59 · 524 阅读 · 0 评论 -
Python图像处理实战-OpenCV的全面应用与代码示例
OpenCV是一个开源计算机视觉和机器学习软件库,提供了多种图像处理功能。它支持多种编程语言,包括Python、C++和Java。使用OpenCV,开发者可以轻松地处理图像和视频数据,实现各种图像处理和计算机视觉任务。原创 2024-11-21 15:34:56 · 425 阅读 · 0 评论 -
Python构建Web服务器-从基础HTTP到RESTful API的实现
Web服务器是处理HTTP请求并响应的服务器。它的基本功能是接收来自客户端(如浏览器)的请求,然后返回相应的内容。通过学习如何构建Web服务器,您将能够理解网络通信的基本原理,并为更复杂的应用打下基础。通过本教程,您已掌握了使用Python构建Web服务器的基本知识。您学习了如何处理HTTP请求、返回静态文件、增强服务器功能,并了解了部署选项。希望这些知识能帮助您在网络编程的道路上不断进步!原创 2024-11-21 15:28:12 · 497 阅读 · 0 评论 -
Python数据科学导论-核心概念与实用库的综合应用
Python是一种高级编程语言,具有易读性和简单性。它被广泛用于数据分析、机器学习和科学计算等领域。通过其丰富的库和框架,Python为数据科学家提供了强大的工具集。在本节中,我们将通过一个实际案例,结合前面的知识,展示如何从头到尾完成数据分析流程。假设我们有一个关于电影评分的数据集,我们将对其进行分析,以了解影响电影评分的因素。在本文中,我们探讨了Python数据科学的基础知识和实用工具,帮助初学者掌握数据科学的核心概念与技能。Python基础知识。原创 2024-11-21 15:21:28 · 707 阅读 · 0 评论 -
Python与Scikit-learn在机器学习数据建模中的应用与优化
Scikit-learn是一个用于机器学习的Python库,提供了一系列简单而高效的工具,用于数据挖掘和数据分析。它建立在NumPy、SciPy和Matplotlib等基础库之上,支持分类、回归、聚类和降维等多种算法。该库的易用性和强大功能使其在数据科学和机器学习领域得到了广泛应用。原创 2024-11-21 15:12:53 · 797 阅读 · 0 评论 -
打造现代Web服务-用Flask构建RESTful API的实践
REST(Representational State Transfer)是一种架构风格,它利用HTTP协议进行数据传输。RESTful API是遵循REST原则的API设计,使得API具有良好的可扩展性和灵活性。Flask是一个轻量级的Python Web框架,适合用于快速开发Web应用和API。其核心设计理念是简单易用,能够让开发者专注于业务逻辑,而不是底层细节。我们在app.pyusers = [原创 2024-11-15 22:10:43 · 813 阅读 · 1 评论 -
Python异步编程入门与进阶-利用asyncio进行高效并发处理
异步编程是一种编程范式,允许程序在执行某些任务时不阻塞主线程。它特别适用于I/O操作,例如文件读取、网络请求等。这种编程方式可以提高程序的效率,因为在等待I/O操作完成时,程序可以继续执行其他任务。通过使用asyncio和aiohttp,我们可以高效地执行异步I/O操作。这对于网络请求、Web爬虫等场景尤其有效。通过限制并发请求的数量,我们可以更好地控制程序的性能和稳定性。掌握asyncio的使用,将为您在Python编程中打开更多的可能性。原创 2024-11-15 22:01:27 · 661 阅读 · 1 评论 -
Python中的unittest框架: 基本用法和实例
单元测试是对软件中最小可测试单元(通常是函数或方法)的测试。它的目标是确保每个单元在独立执行时能够产生预期的结果。及时发现代码中的错误提高代码的可维护性保障后续代码修改不破坏现有功能unittest。原创 2024-09-21 00:29:14 · 4159 阅读 · 1 评论 -
Python中的异步编程及其应用场景
在传统的同步编程中,代码按照顺序逐行执行,一行执行完毕后再执行下一行。这种模式在处理IO密集型任务时效率较低,因为大部分时间都花在等待IO操作完成上。而异步编程则允许代码在执行IO操作时不阻塞程序的其他部分,从而提高了程序的并发性和性能。在Python中,异步编程通过协程(coroutine)和事件循环(event loop)来实现。协程是一种轻量级的线程,可以在IO操作时暂停执行,而事件循环则负责调度和管理协程的执行。在Python中,异步编程是处理高并发和IO密集型任务的重要方式之一。原创 2024-09-06 00:44:47 · 694 阅读 · 18 评论 -
数据处理与分析【大规模数据的Python利器】
在本文中,我们深入探讨了如何利用Python进行大规模数据处理和分析。我们首先介绍了Python在这一领域的优势,包括其开源生态系统、并行处理能力和数据可视化能力。随后,我们通过具体的代码示例展示了如何处理不同类型的大规模数据,包括结构化数据、文本数据和图像数据,并使用Python进行统计分析、情感分析和图像分类等任务。最后,我们还介绍了如何利用分布式计算框架,如PySpark,来处理更大规模的数据集。Python拥有丰富的开源生态系统,提供了众多数据处理和分析工具,能够满足各种需求。原创 2024-09-06 00:29:15 · 884 阅读 · 3 评论 -
Holoviews 创建复杂的可视化布局
除了添加工具栏和滑块等基本交互功能外,Holoviews 还允许我们自定义交互功能,以满足特定需求。# 创建一个滑块来选择城市# 定义一个函数,根据用户选择的城市更新图形。原创 2024-09-05 20:41:43 · 535 阅读 · 1 评论 -
使用Python和Geopandas进行地理数据可视化的实用指南
你也可以自定义地图的样式,例如更改颜色、添加标签等。# 自定义地图样式plt.show()本文深入探讨了如何利用Python和Geopandas进行地理数据可视化和分析,并提供了丰富的代码示例和案例演示。准备工作:在开始之前,需要确保已经安装了Python和Geopandas库,可以使用pip来安装Geopandas。加载地理数据:Geopandas支持多种地理数据格式,包括Shapefile、GeoJSON、Geopackage等,可以使用函数加载数据。数据探索与处理。原创 2024-09-05 20:38:48 · 1477 阅读 · 0 评论 -
Streamlit快速构建数据应用程序【Python可视化的未来】
Streamlit是一个用于构建数据应用程序的Python库,它允许您使用简单的Python脚本创建交互式应用程序。通过Streamlit,您可以快速创建数据可视化界面,而无需编写大量的HTML、CSS或JavaScript代码。您只需编写Python代码,就可以构建具有各种交互功能的应用程序。在本文中,我们介绍了如何使用Streamlit快速构建数据应用程序,并探讨了其在Python可视化领域的未来。原创 2024-09-05 20:08:31 · 715 阅读 · 0 评论 -
在Python中利用mpld3创建交互式Matplotlib图表
本文介绍了如何利用 mpld3 库在 Python 中创建交互式 Matplotlib 图表。首先,我们简要介绍了 mpld3 的安装方法,并提供了示例代码演示了如何创建交互式散点图、折线图和直方图。在示例中,我们展示了如何通过结合使用 Matplotlib 和 mpld3,轻松地实现图表的交互功能。通过添加插件和功能,我们可以实现缩放、平移、鼠标悬停显示数据标签等多种交互操作,从而使得图表更具吸引力和实用性。交互式图表能够提升数据可视化的效果和用户体验,使得数据分析和展示更加生动和直观。原创 2024-09-05 20:04:46 · 1049 阅读 · 0 评论 -
使用Plotly Express创建快速且漂亮的可视化图表
Plotly Express是Plotly的高级API之一,它提供了一种简单而直观的方式来创建各种类型的图表。与传统的Plotly相比,Plotly Express具有更高的抽象程度,因此能够在几行代码内生成具有专业外观的图表。在本文中,我们介绍了如何使用Plotly Express库来创建快速且漂亮的可视化图表。我们从安装Plotly Express开始,然后演示了如何使用简单的示例数据集创建各种类型的图表,包括散点图、面积图和条形图等。原创 2024-09-05 20:02:56 · 2692 阅读 · 0 评论 -
使用Pygal库创建可缩放的矢量图表
Pygal是一个Python库,专门用于创建可缩放的矢量图表。它基于SVG(可缩放矢量图形)格式,这意味着您可以创建漂亮的、高质量的图表,并且它们可以无损地缩放到任何大小,而不会失真。Pygal支持各种图表类型,包括线图、柱状图、饼图等,并且具有丰富的自定义选项和交互功能。Pygal允许您对图表进行各种自定义,以满足特定的需求。例如,您可以修改图表的颜色、字体、轴标签等。# 创建一个柱状图实例# 添加数据# 设置图表的标题和x轴标签# 自定义颜色# 保存图表为SVG文件。原创 2024-09-05 19:54:00 · 554 阅读 · 0 评论