n个元素顺序进栈,那么出栈的顺序有多少种?

我们把n个元素的出栈个数的记为f(n), 那么对于1,2,3, 我们很容易得出:

  f(1) = 1

  f(2) = 2

  f(3) = 5

  然后我们来考虑f(4), 我们给4个元素编号为1,2,3,4, 那么考虑:元素1出栈顺序可能出现在1号位置,2号位置,3号位置和4号位置(很容易理解,一共就4个位置,比如1234,元素1就在1号位置)。

  分析:

  1) 如果元素1在1号位置,那么只可能1进栈,马上出栈,此时还剩元素2、3、4等待操作,就是子问题f(3);

  2) 如果元素1在2号位置,那么一定有一个元素比1先出栈,即有f(1)种可能顺序(只能是2),还剩3、4,即f(2),     根据排列组合,一共的顺序个数为f(1) * f(2);

  3) 如果元素1在3号位置,那么一定有两个元素比1先出栈,即有f(2)种可能顺序(只能是2、3),还剩4,即f(1),

  根据排列组合,一共的顺序个数为f(2) * f(1);

  4) 如果元素1在4号位置,那么一定是1先进站,最后出栈,那么元素2、3、4的出栈顺序即是此小问题的解,即         f(3);

  结合所有情况,即f(4) = f(3) + f(2) * f(1) + f(1) * f(2) + f(3);

  为了规整化,我们定义f(0) = 1;于是f(4)可以重新写为:

  f(4) = f(0)*f(3) + f(1)*f(2) + f(2) * f(1) + f(3)*f(0)

  然后我们推广到n,推广思路和n=4时完全一样,于是我们可以得到:

  f(n) = f(0)*f(n-1) + f(1)*f(n-2) + ... + f(n-1)*f(0)

  即

  260x81

F[n]=∑(i=0,i<=n-1)F[i]*F[n-i](显然初始条件为F[0]=1,F[1]=1)

n个元素的情况可分为三个阶段,先进i个元素入栈出栈(有F[i]种情况),然后第i+1个元素直接入栈出栈,再n-(i+1)个元素入栈出栈(F[n-i-1]种情况),所以是F[i]*F[n-i-1]种情况,显然i的取值范围是[0,n-1],累加即是结果。


这个的结果有数学公式的 是C(n,2n)-C(n-1,2n),至于公式怎么来,必须将问题转化为数学问题“卡塔兰数”(Catalan).程序员的做法是用递归,要想写出效率高的程序,就得用这个数学问题推导出来的公式.

 

#include <iostream>
#include<cstring>
using namespace std;
int popnumber(int num)
{
	int sum=0;
	if (num == 0 || num == 1)
		return 1;
	else if (num == 2)
		return 2;
	for (int i = 0; i < num; i++)
	{
		sum += popnumber(i)*popnumber(num-1-i);
	}

	return sum;
}
int main(int argc, char** argv)
{
	int len;
   //	string str;
   //	cout<<"输入入栈的元素:"
   // cin>>str;
   // len=str.length(); 
    cout<<"输入入栈元素个数:"; 
    cin>>len;	 
    cout<<"出栈可能结果为:"<<popnumber(len)<<endl;
   return 0;
}




评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值