- 博客(7)
- 收藏
- 关注
原创 使用pytorch准备自己的数据
前言对于著名的数据集比如mnist,像Tensorflow、pytorch这样的流行框架已把它们集成到相关模块中,使用时一至几行简单的代码就能调用。但往往我们需要在自己的数据集上完成一些操作,这篇博客就旨在以单标签图像分类为例,浅谈一下如何使用pytorch准备自己的数据,如有错误,敬请斧正。我所做的是一个室外图像的天气分类任务,类别只有sunny和cloudy两类。在这个例子中我们不需要提供额外的
2017-05-29 23:29:04 9291 3
原创 Tensorflow中权值和feature map的可视化
前言Tensorflow中可以使用tensorboard这个强大的工具对计算图、loss、网络参数等进行可视化。本文并不涉及对tensorboard使用的介绍,而是旨在说明如何通过代码对网络权值和feature map做更灵活的处理、显示和存储。本文的相关代码主要参考了github上的一个小项目,但是对其进行了改进。原项目地址为(https://github.com/grishasergei/con
2017-04-24 11:54:28 24647 15
原创 Tensorflow中使用tfrecord方式读取数据
前言本博客默认读者对神经网络与Tensorflow有一定了解,对其中的一些术语不再做具体解释。并且本博客主要以图片数据为例进行介绍,如有错误,敬请斧正。使用Tensorflow训练神经网络时,我们可以用多种方式来读取自己的数据。如果数据集比较小,而且内存足够大,可以选择直接将所有数据读进内存,然后每次取一个batch的数据出来。如果数据较多,可以每次直接从硬盘中进行读取,不过这种方式的读取效率就比较
2017-04-23 20:11:22 25107 9
原创 使用scrapy图片管道下载图片
前言Scrapy是Python语言下一个十分流行的爬虫框架,本文不对Scrapy本身做详细介绍。有关Scrapy的安装可以参考官网的安装指南,不过本人更推荐使用Anaconda,Anaconda集成了Python和一系列常用的的Python库,当然也包括Scrapy。安装好Anaconda,基本上就可以直接使用Scrapy了,免去了一些麻烦的依赖的安装。不过事情并非总是一帆风顺,我们依然有可能遇到一
2017-01-05 10:38:20 3096 2
原创 使用caffe训练一个多标签分类/回归模型
前言这篇博客和上一篇性质差不多,都是旨在说明使用caffe训练图像分类模型的大概流程。不同的是,上篇博客讲的单标签图像分类问题,顾名思义,其输入和输出都是单标签或者可以说是单类别的,而此篇则把重点放在如何处理多标签分类/回归问题的输入和输出上。多标签分类/回归问题和单标签的工作流程比较类似,大致分为以下几个步骤,然后本博客再对各个环节做进一步解释。准备数据(图像整理好放到合适的文件夹中,对应的gr
2016-11-29 21:56:42 5931 5
原创 使用caffe fine-tune一个单标签图像分类模型
本文叙述了使用caffe 针对图像识别任务进行fine-tune的大概流程,包括从最初的数据准备开始,到最终如何训练测试网络。
2016-11-23 15:00:17 2664 1
原创 用Python的matplotlib库动态显示不断增长的数据
"""Created on Mon Dec 07 16:34:10 2015@author: SuperWang"""import matplotlib.pyplot as pltimport numpy as npfig,ax=plt.subplots()fig2,ax2=plt.subplots()y1=[]y2=[]for i in range(50): y1.append
2016-10-11 13:39:03 7906 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人