HDU1839Delay Constrained Maximum Capacity Path(二分答案+SPFA)经典

本文介绍了一个寻找从起点到终点的最大容量路径的问题,在限定时间内完成运输。通过SPFA算法优化搜索策略,确保在时间约束条件下找到最优解。

Delay Constrained Maximum Capacity Path

Time Limit: 10000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 1314    Accepted Submission(s): 418


Problem Description
Consider an undirected graph with N vertices, numbered from 1 to N, and M edges. The vertex numbered with 1 corresponds to a mine from where some precious minerals are extracted. The vertex numbered with N corresponds to a minerals processing factory. Each edge has an associated travel time (in time units) and capacity (in units of minerals). It has been decided that the minerals which are extracted from the mine will be delivered to the factory using a single path. This path should have the highest capacity possible, in order to be able to transport simultaneously as many units of minerals as possible. The capacity of a path is equal to the smallest capacity of any of its edges. However, the minerals are very sensitive and, once extracted from the mine, they will start decomposing after T time units, unless they reach the factory within this time interval. Therefore, the total travel time of the chosen path (the sum of the travel times of its edges) should be less or equal to T.
 

Input
The first line of input contains an integer number X, representing the number of test cases to follow. The first line of each test case contains 3 integer numbers, separated by blanks: N (2 <= N <= 10.000), M (1 <= M <= 50.000) and T (1 <= T <= 500.000). Each of the next M lines will contain four integer numbers each, separated by blanks: A, B, C and D, meaning that there is an edge between vertices A and B, having capacity C (1 <= C <= 2.000.000.000) and the travel time D (1 <= D <= 50.000). A and B are different integers between 1 and N. There will exist at most one edge between any two vertices.
 

Output
For each of the X test cases, in the order given in the input, print one line containing the highest capacity of a path from the mine to the factory, considering the travel time constraint. There will always exist at least one path between the mine and the factory obbeying the travel time constraint.
 

Sample Input
  
2 2 1 10 1 2 13 10 4 4 20 1 2 1000 15 2 4 999 6 1 3 100 15 3 4 99 4
 

Sample Output
  
13 99
 

Author
Mugurel Ionut Andreica
 

Source
题意:有n个地点,m条边,有一种矿物在1,矿物加工场在n,假设从1到n运送矿物的时间大于T的话,矿物就会分解,要求运送尽可能多的矿物到加工厂。
#include<stdio.h>
#include<queue>
#include<algorithm>
#include<vector>
using namespace std;
const int N = 10005;
struct EDG
{
    int u,v,c,t;
    friend bool operator<(const EDG &a,const EDG &b)
    {
        return a.c<b.c;
    }
};

EDG edg[5*N];
vector<EDG>mapt[N];
int n,T,minTim[N];

bool spfaTim(int ans)
{
    queue<int>q;
    int s,k;
    bool inq[N]={0};
    for(int i=1;i<=n;i++)
    minTim[i]=-1;
    minTim[1]=T; q.push(1);
    while(!q.empty())
    {
        s=q.front(); q.pop();
        inq[s]=0;
        k=mapt[s].size();
        for(int i=0;i<k;i++)
        if(mapt[s][i].c>=ans)
        {
            int v=mapt[s][i].v;
            if(minTim[v]<minTim[s]-mapt[s][i].t)
            {
                if(v==n)
                 return true;
                minTim[v]=minTim[s]-mapt[s][i].t;
                if(!inq[v])
                inq[v]=true,q.push(v);
            }
        }
    }
    return false;
}

int main()
{
    int cas,m,ans;
    EDG ss;
    scanf("%d",&cas);
    while(cas--)
    {
        scanf("%d%d%d",&n,&m,&T);
        for(int i=1;i<=n;i++)
        mapt[i].clear();
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%d%d",&edg[i].u,&edg[i].v,&edg[i].c,&edg[i].t);
            ss.c=edg[i].c; ss.t=edg[i].t;
            ss.v=edg[i].v; mapt[edg[i].u].push_back(ss);
            ss.v=edg[i].u; mapt[edg[i].v].push_back(ss);
        }
        sort(edg+1,edg+1+m);
        int l=1,r=m,mid;
        ans=0;
        while(l<=r)
        {
            mid=(l+r)/2;
            if(spfaTim(edg[mid].c))
             {
                 ans=edg[mid].c; l=mid+1;
             }
             else r=mid-1;
        }
        printf("%d\n",ans);
    }
}


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值