bzoj 1036 [ZJOI2008]树的统计Count (树链剖分 + 线段树)

Description

  一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。我们将以下面的形式来要求你对这棵树完成
一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 I
II. QSUM u v: 询问从点u到点v的路径上的节点的权值和 注意:从点u到点v的路径上的节点包括u和v本身

Input

  输入的第一行为一个整数n,表示节点的个数。接下来n – 1行,每行2个整数a和b,表示节点a和节点b之间有
一条边相连。接下来n行,每行一个整数,第i行的整数wi表示节点i的权值。接下来1行,为一个整数q,表示操作
的总数。接下来q行,每行一个操作,以“CHANGE u t”或者“QMAX u v”或者“QSUM u v”的形式给出。
对于100%的数据,保证1<=n<=30000,0<=q<=200000;中途操作中保证每个节点的权值w在-30000到30000之间。

Output

  对于每个“QMAX”或者“QSUM”的操作,每行输出一个整数表示要求输出的结果。

Sample Input

4

1 2

2 3

4 1

4 2 1 3

12

QMAX 3 4

QMAX 3 3

QMAX 3 2

QMAX 2 3

QSUM 3 4

QSUM 2 1

CHANGE 1 5

QMAX 3 4

CHANGE 3 6

QMAX 3 4

QMAX 2 4

QSUM 3 4

Sample Output

4

1

2

2

10

6

5

6

5

16

题解

先树链剖分,再用线段树维护区间最值、区间和,支持单点修改即可。判断一条链相交的点就top一直跳跳跳……跳到一个链上就行了。

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 100010;
int n, m, num, root, a[N], head[N];
int idy, indx, siz[N], fa[N], dep[N], son[N], in[N], out[N], val[N], seq[N], top[N];
struct Edge {
    int v, next;
} edge[N];

struct Node {
    int l, r, sum, maxx;
} t[N];

void add(int u, int v) {
    num ++;
    edge[num].v = v;
    edge[num].next = head[u];
    head[u] = num;
}

void dfs1(int u, int f, int d) {
    siz[u] = 1, fa[u] = f, dep[u] = d;
    for(int i = head[u]; i; i = edge[i].next) {
        int v = edge[i].v;
        if(v != f) {
            dfs1(v, u, d + 1);
            siz[u] += siz[v];
            if(son[u] == -1 || siz[son[u]] < siz[v])
                son[u] = v;
        }
    }
}

void dfs2(int u, int tp) {
    idy ++;
    in[u] = out[u] = idy, seq[idy] = u;
    val[in[u]] = a[u]; top[u] = tp;
    if(son[u] == -1) return ;
    dfs2(son[u], tp);
    for(int i = head[u]; i; i = edge[i].next) {
        int v = edge[i].v;
        if(son[u] != v && v != fa[u])
            dfs2(v, v);
    }
    out[u] = idy;
}

void build(int root, int L, int R) {
    t[root].l = L, t[root].r = R;
    if(L == R) {
        t[root].sum = val[L];
        t[root].maxx = val[L];
        return ;
    }
    int mid = (L + R) >> 1;
    build(root << 1, L, mid);
    build(root << 1 | 1, mid + 1, R);
    t[root].sum = t[root << 1].sum + t[root << 1 | 1].sum;
    t[root].maxx = max(t[root << 1].maxx, t[root << 1 | 1].maxx);
    return ;
}

void modify(int root, int x, int delta) {
    int l = t[root].l, r = t[root].r;
    if(l == r && l == x) {
        t[root].sum = delta;
        t[root].maxx = delta;
        return ;
    }
    int mid = (l + r) >> 1;
    if(x <= mid)
        modify(root << 1, x, delta);
    else
        modify(root << 1 | 1, x, delta);
    t[root].sum = t[root << 1].sum + t[root << 1 | 1].sum;
    t[root].maxx = max(t[root << 1].maxx, t[root << 1 | 1].maxx);
    return ;
}

int query1(int root, int L, int R) {
    int l = t[root].l, r = t[root].r;
    if(L <= l && r <= R)
        return t[root].sum;
    int mid = (l + r) >> 1, rt = 0;
    if(L <= mid)
        rt += query1(root << 1, L, R);
    if(R > mid)
        rt += query1(root << 1 | 1, L, R);
    t[root].sum = t[root << 1].sum + t[root << 1 | 1].sum;
    return rt;
}

int query2(int root, int L, int R) {
    int l = t[root].l, r = t[root].r;
    if(L <= l && r <= R)
        return t[root].maxx;
    int mid = (l + r) >> 1, rt = -0x3ffffff;
    if(L <= mid)
        rt = max(rt, query2(root << 1, L, R));
    if(R > mid)
        rt = max(rt, query2(root << 1 | 1, L, R));
    t[root].maxx = max(t[root << 1].maxx, t[root << 1 | 1].maxx);
    return rt;
}

int anssum(int u, int v) {
    int f1 = top[u], f2 = top[v];
    int su = 0;
    while(f1 != f2){
        if(dep[f1] < dep[f2]) swap(f1, f2), swap(u, v);
        su += query1(1, in[f1], in[u]);
        u = fa[f1], f1= top[u];
    }
    if(dep[u] > dep[v])
        swap(u, v);
    su += query1(1, in[u], in[v]);
    return su;
} 

int ansmax(int u, int v) {
    int f1 = top[u], f2 = top[v];
    int ma = -0x3ffffff;
    while(f1 != f2){
        if(dep[f1] < dep[f2]) swap(f1, f2), swap(u, v);
        ma = max(ma, query2(1, in[f1], in[u]));
        u = fa[f1], f1= top[u];
    }
    if(dep[u] < dep[v])
        swap(u, v);
    ma = max(ma, query2(1, in[v], in[u]));
    return ma;
}

int main() {
    memset(son, -1, sizeof(son));
    scanf("%d", &n);
    for(register int i = 1; i < n; i ++) {
        int u, v;
        scanf("%d %d", &u, &v);
        add(u, v);
        add(v, u);
    }
    for(register int i = 1; i <= n; i ++)
        scanf("%d", &a[i]);
    dfs1(1, -1, 0); dfs2(1, 1);
    scanf("%d", &m);
    build(root = 1, 1, n);
    while(m --) {
        char s[10];
        int u, v;
        scanf("%s %d %d", s, &u, &v);
        if(s[0] == 'Q') {
            if(s[1] == 'S')
                printf("%d\n", anssum(u, v));
            else
                printf("%d\n", ansmax(u, v));
        }
        else
            modify(1, in[u], v);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值