Python Pandas实现数据分组求平均值并填充nan

Python实现按某一列关键字分组,并计算各列的平均值,并用该值填充该分类该列的nan值。

DataFrame数据格式

以下是数据存储形式:
行业数据

fillna方式实现

  1. 按照industryName1列,筛选出业绩
  2. 筛选出相同行业的Series
  3. 计算平均值mean,采用fillna函数填充
  4. append到新DataFrame中
  5. 循环遍历行业名称,完成2,3,4步骤
factordatafillna = pd.DataFrame()
industrys = newfactordata1.industryName1.unique()
for ind in industrys:
    t = newfactordata1.industryName1 == ind
    a = newfactordata1[t].fillna(newfactordata1[t].mean())
    factordatafillna = factordatafillna.append(a)

groupby方式实现

采用groupby计算,详细见代码注释


df = pd.DataFrame({'code':[1,2,3,4,5,6,7,8],
                   'value':[np.nan,5,7,8,9,10,11,12],                   
                   'value2':[5,np.nan,7,np.nan,9,10,11,12],
                   'indstry':['农业1','农业1','农业1','农业2','农业2','农业4','农业2','农业3']},
                    columns=['code','value','value2','indstry'],
                    index=list('ABCDEFGH'))

# 只留下需要处理的列
cols = [col for col in df.columns if col not in['code','indstry']]
# 分组的列
gp_col = 'indstry'
# 查询nan的列
df_na = df[cols].isna()
# 根据分组计算平均值
df_mean = df.groupby(gp_col)[cols].mean()

print(df)

# 依次处理每一列
for col in cols:
    na_series = df_na[col]
    names = list(df.loc[na_series,gp_col])     

    t = df_mean.loc[names,col]
    t.index = df.loc[na_series,col].index

    # 相同的index进行赋值     
    df.loc[na_series,col] = t

print(df)
code  value  value2 indstry
A     1    NaN     5.0     农业1
B     2    5.0     NaN     农业1
C     3    7.0     7.0     农业1
D     4    8.0     NaN     农业2
E     5    9.0     9.0     农业2
F     6   10.0    10.0     农业4
G     7   11.0    11.0     农业2
H     8   12.0    12.0     农业3
   code  value  value2 indstry
A     1    6.0     5.0     农业1
B     2    5.0     6.0     农业1
C     3    7.0     7.0     农业1
D     4    8.0    10.0     农业2
E     5    9.0     9.0     农业2
F     6   10.0    10.0     农业4
G     7   11.0    11.0     农业2
H     8   12.0    12.0     农业3
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页