Sklearn GridSearchCV跑SVM很慢或卡死解决办法,SVM线性核函数卡死

今天跑人工智能SVM实验,想试一下线性核函数,结果卡死了,很久也不出结果,但之前使用高斯核函数是没问题的。历经千辛万苦终于找到了原因,记录一下,希望对后人有帮助。本人只是个做作业的小菜菜,如有不对欢迎指正!

参考了以下文章:

关于Python Sklearn SVM 为什么运行很慢得到结果的原因
https://blog.csdn.net/zhike5110/article/details/88878812

大致原因

SVM需要不断寻找最能区分数据的超平面,直至收敛。我们以线性(Linear)核函数为例,如果数据间有明显的线性关系时,SVM就能很快找到这个超平面,达到收敛。但如果数据间无明显的线性关系,即使数据量很小,也很难找到这个超平面,导致迟迟不收敛。具体解释请看上面附的原文章。

解决方法

原代码

我原来的代码如下。使用的是线性核函数。

import time
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC

# 读取训练集并切分
X, Y = load_data()   
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0)

# 参数
parameters = [
    {
        'kernel': ['linear'],   # 线性核函数
        'C': [1 * 10**i for i in range(-3, 11)],
        'class_weight': ['balanced'] #样本均衡度
    }
]
# 参数调优 
clf = GridSearchCV(estimator=SVC(), param_grid=parameters, cv=8, n_jobs=5, scoring='f1_macro')
start = time.time()
clf.fit(X_train, y_train)
elapsed = time.time() - start
print("Fitting finished in %d min %d s" % (elapsed / 60, elapsed % 60))
print("Best set score:{:.2f}".format(clf.best_score_))
print("Best parameters:{}".format(clf.best_params_))
print("Test set score:{:.2f}".format(clf.score(X_test, y_test)))

使用上面的参数跑了很久也不出结果,把参数组合数量调少也不行。

方法一:限制最大迭代次数

设置最大迭代次数参数max_itermax_iter默认为-1,表示直至计算出收敛的超平面才停止。将其设为一个合适的正整数即可。

设置max_iter参数:

parameters = [
    {
        'kernel': ['linear'],   # 线性核函数
        'C': [1 * 10**i for i in range(-3, 11)],
        'class_weight': ['balanced'], # 样本均衡度
        'max_iter': [1000000]   # 限制最多迭代1000000次
    },
]

跑了有5分多钟,得到结果:

限制最大迭代次数的线性核函数训练结果

方法二:改用其他的核函数

改用非线性的核函数,比如常用的高斯核函数(也叫径向基核函数)、多项式核函数,可能能够正常收敛。

采用高斯核函数(Radial Basis Function,RBF)

采用高斯核函数,参数如下:

parameters = [
    {
        'kernel': ['rbf'],   # 高斯核函数
        'C': [1 * 10**i for i in range(-3, 11)],
        'gamma': [1 * 10**i for i in range(-10, 4)],
        'class_weight': ['balanced'] # 样本均衡度
    }
]

参数组合数量翻倍了,需要耐心等待。训练时间56分钟,结果:

【高斯核函数训练结果】

采用多项式核函数(Polynomial Kernel)

我又尝试了多项式核函数,但对于我的数据仍然不好收敛,因此,只好也加上max_iter参数:

parameters = [
    {
        'kernel': ['poly'],		# 多项式核函数
        'C': [1 * 10**i for i in range(-3, 11)],
        'degree': range(2, 10),
        'class_weight': ['balanced'],  #样本均衡度
        'max_iter': [1000000]	# 限制最多迭代1000000次
    }
]

参数组合数量仍然比较多。训练时间85分钟。结果如下:

限制最大迭代次数的多项式核函数训练结果

换核函数还是不行?

原因是不同的参数组合也会影响收敛的速度。比如在我的实验中,采用高斯核函数,如果gamma设置过小也迟迟不出结果。建议解决方法如下:

  • 先使用少的参数组合数量,降低试错成本。先不要刚上来就设置过多的参数组合数量,要不然跑的太慢,你无法知道是正常在跑还是收敛慢了,最后跑了几个小时跑不出来才发现不对劲。如果用少量的参数组合很快跑出来了,就尝试加多参数组合数量,看还能不能跑出来;
  • 也可以设置一个较大的max_iter参数。这样的话能防止收敛慢的参数组合无限制地跑下去,正常收敛的参数组合也不会受影响。

SVM教程推荐

推荐浙江大学胡浩基老师的SVM课程,讲的非常清楚:

浙大胡浩基老师SVM:
https://www.bilibili.com/video/BV1jt4y1E7BQ/?spm_id_from=333.337.search-card.all.click&vd_source=44f1ad5d101e28cd116fe2918182d1b6

B站也有胡老师完整的机器学习课程视频,感兴趣的同学可以去找找。

  • 8
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 支持向量机(SVM)是一种常用的机器学习算法,可以用于分类和回归问题。在轴承故障数据方面,SVM可以用于分类不同类型的故障,例如滚珠轴承和内圈故障。以下是使用SVM训练轴承故障数据的一般步骤: 1. 数据收集:收集不同类型的轴承故障数据,并对其进行标记(例如,滚珠轴承故障为1,内圈故障为2等)。 2. 数据预处理:对数据进行预处理,包括数据清洗、特征提取、特征选择、数据转换等。 3. 数据划分:将数据分为训练集和测试集。 4. 模型训练:使用训练训练SVM模型,选择适当的核函数和参数,并进行交叉验证以避免过拟合。 5. 模型评估:使用测试集对模型进行评估,计算模型的准确率、召回率、F1值等指标。 6. 模型优化:根据评估结果对模型进行调整和优化,例如调整SVM的参数或使用其他算法。 7. 模型应用:将训练好的模型应用于新的数据,并对其进行分类。 需要注意的是,对于轴承故障数据的训练,选择适当的特征和核函数非常重要,这将直接影响模型的性能。同时,数据预处理和模型优化也需要仔细调整,以达到最佳的分类效果。 ### 回答2: SVM支持向量机)是一种常用的机器学习算法,用于解决分类和回归问题。在轴承故障数据的训练中,SVM可以用于根据给定的特征来区分正常轴承和故障轴承。 首先,我们需要获取轴承故障数据,并提取特征。特征可以包括振动频率、温度、轴承运行时间等。这些特征将作为SVM训练的输入。 接下来,我们将数据分为训练集和测试集。训练集用于训练SVM模型,测试集用于评估模型的性能。 在训练过程中,SVM算法通过寻找最优超平面来实现分类。最优超平面的选择是为了最大化正常轴承与故障轴承之间的间隔,并且最小化误分类的样本数。某些情况下,数据可能不是线性可分的,这时可以使用SVM核函数来将数据映射到高维空间,使其变得线性可分。 在训练完成后,我们可以使用测试集来评估SVM模型的性能。评估指标可以包括准确率、召回率和F1值等。这些指标可以帮助我们了解SVM模型在区分正常轴承和故障轴承方面的表现如何。 最后,我们可以使用已经训练好的SVM模型来预测新的轴承故障数据。根据特征值,SVM模型可以告诉我们这个轴承是正常的还是存在故障。 总之,SVM是一种强大的机器学习算法,可以有效训练轴承故障数据。通过提取特征、分割数据、选择核函数和评估性能,SVM可以帮助我们准确地识别出轴承的故障情况。 ### 回答3: 支持向量机SVM)是一种常用的机器学习算法,可以用于训练轴承故障数据。轴承故障数据是指记录了轴承在不同时间点的运行状态和故障情况的数据。 要使用SVM训练轴承故障数据,首先需要准备好轴承故障数据集。这个数据集应包含不同时间点的轴承特征,如振动信号、温度、压力等,并对应着轴承是否发生故障的标签。 接下来,需要对数据进行预处理。这包括去除异常值、缺失值处理和特征归一化等步骤,以确保数据的准确性和一致性。 然后,将预处理后的数据集分为训练集和测试集。训练集用于训练SVM模型,测试集用于评估模型的性能。训练集中的每个样本都有特征和标签,SVM通过找到一个超平面来将两个类别的样本分开,使得两个类别之间的间隔最大化。 在训练过程中,SVM算法会根据训练集中的样本调整模型的参数,以达到分类效果最优的目标。参数的调整可以使用交叉验证等方法进行选择。 训练完成后,可以使用训练好的SVM模型对新的轴承故障数据进行故障预测。预测的结果可以根据模型所属类别的概率来进行解释和判断。 在使用SVM训练轴承故障数据时,需要注意过拟合和欠拟合问题。过拟合指模型在训练集上表现良好,但在测试集上表现较差;欠拟合指模型在训练集和测试集上都表现较差。为了解决这些问题,可以采用交叉验证、调整正则化参数等方法来优化模型的泛化能力。 综上所述,使用SVM训练轴承故障数据可以帮助我们预测和识别轴承的故障情况,提高轴承的可靠性和运行效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值