自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(36)
  • 收藏
  • 关注

转载 LR VS SVM VS RF

LR 与SVM不同1.logistic regression适合需要得到一个分类概率的场景,SVM则没有分类概率2.LR其实同样可以使用kernel,但是LR没有support vector在计算复杂度上会高出很多。如果样本量很大并且需要的是一个复杂模型,那么建议SVM3. 如果样本比较少,模型又比较复杂。那么建议svm,它有一套比较好的解构风险最小化理论的

2017-10-12 13:34:14 1370

转载 机器学习算法比较

本文主要回顾下几个常用算法的适应场景及其优缺点!(提示:部分内容摘自网络)。机器学习算法太多了,分类、回归、聚类、推荐、图像识别领域等等,要想找到一个合适算法真的不容易,所以在实际应用中,我们一般都是采用启发式学习方式来实验。通常最开始我们都会选择大家普遍认同的算法,诸如SVM,GBDT,Adaboost,现在深度学习很火热,神经网络也是一个不错的选择。假如你在乎精度(accuracy)的

2017-10-11 22:02:13 468

转载 SVM参数详解

svm参数说明----------------------如果你要输出类的概率,一定要有-b参数svm-train training_set_file model_filesvm-predict test_file model_fileoutput_file自动脚本:python easy.py train_data test_data自动选择最优参数,自动

2017-10-11 21:52:15 2311

转载 深度学习网络卷积在GPU上的优化

雷锋网(搜索“雷锋网”公众号关注)按: 本文转载自英伟达NVIDIA企业解决方案公众号。赵开勇,香港浸会大学计算机系异构计算实验室PhD Candidate,长期从事高性能计算领域研究,在CPU、GPU异构计算方面有多年的研究经验。赵开勇先生组织参与多个科研单位和高性能用户的高性能项目研发,曾担任浪潮GPU高性能计算顾问,曾多次担任NVidia中国CUDA比赛评委。他还曾经组织出版《GPU高性能运

2017-09-23 22:07:08 1262

翻译 从决策树到RF,以及boosting Adaboost到GBDT算感悟

一、原因:准备学习一下机器学习中基于树模型的分类与回归算法,变看了很多的算法介绍与论文,同时也找了一些现有的库去运行。最后又设计到级联式回归,自从看了GBDT后才发现其实就是GBDT的一种变种算法。因此一路下来看了不少算法,明白了它们之间的基本关系与算法的简单原理。在此记录一下,以后也方便的查看。二、决策树大类算法:1.决策树:决策树是一种常见的分类与回归模型,主要呈树

2017-09-23 22:01:19 480

转载 C++多态

1. 用virtual关键字申明的函数叫做虚函数,虚函数肯定是类的成员函数。2. 存在虚函数的类都有一个一维的虚函数表叫做虚表。类的对象有一个指向虚表开始的虚指针。虚表是和类对应的,虚表指针是和对象对应的。3. 多态性是一个接口多种实现,是面向对象的核心。分为类的多态性和函数的多态性。4. 多态用虚函数来实现,结合动态绑定。5. 纯虚函数是虚函数再加上= 0。6. 抽象类是指包

2017-09-23 21:32:49 169

转载 算法工程师面试

算法工程师面试必备成为算法工程师,应该学习哪些东西首先说算法工程师有几个方向:NLP,推荐,CV,深度学习,然后结合公司业务做得内容各不相同 传统机器学习算法:感知机,SVM,LR,softmax,Kmeans,DBSCAN,决策树(CART,ID3,C45),GBDT,RF,Adaboost,xgboost,EM,BP神经网络,朴素贝叶斯,LDA,PCA,核函数,最大熵等

2017-09-17 13:59:18 4719 1

转载 SCI期刊图像处理

刊名简称期刊名称分区影响因子INFORM PROCESSLETTINFORMATION PROCESSING LETTERS40.453J VLSI SIGPROC SYSTJOURNAL OF VLSI SIGNALPROCESSING SYSTEMS FO

2017-09-11 17:08:49 1577

转载 SCI 投稿Cover letter模板大全 (2012-01-12 16:20:30)转载▼ 标签: e-mail 稿号 意见 修改稿 信件 杂谈 分类: technology 1.第一次投稿Cov

SCI 投稿Cover letter模板大全 (2012-01-12 16:20:30)转载▼标签: e-mail 稿号 意见 修改稿 信件 杂谈分类: technology1.第一次投稿Cover letter:主要任务是介绍文章主要创新以及声明没有一稿多投

2017-09-06 21:44:40 1918

转载 SCI 图像处理 机器学习

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE SCI IF=4.378ACM TRANSACTIONS ON GRAPHICS SCI IF=3.619IEEE TRANSACTIONS ON MEDICAL IMAGING SCI IF=3.54INTERNATIONAL JOURNAL OF

2017-09-05 11:26:26 1036

转载 神经网络的激活函数sigmoid RELU

日常 coding 中,我们会很自然的使用一些激活函数,比如:sigmoid、ReLU等等。不过好像忘了问自己一(n)件事:为什么需要激活函数?激活函数都有哪些?都长什么样?有哪些优缺点?怎么选用激活函数?本文正是基于这些问题展开的,欢迎批评指正!(此图并没有什么卵用,纯属为了装x …)Why use activation functions?激活函数通

2017-09-04 11:34:41 1064

转载 机器学习常见模型分析与比较

朴素贝叶斯:  有以下几个地方需要注意:  1. 如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分类为例),比如说是句子单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数。  2. 计算公式如下:     其中一项条件概率可以通过朴素贝叶斯条件独立展开。要注意一点就是 的计算方法,而由朴素贝叶斯的前提假设可知, = ,因

2017-09-03 15:43:09 29853 2

转载 xGBoost GBDT

作者:wepon链接:https://www.zhihu.com/question/41354392/answer/98658997来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。xgboost相比传统gbdt有何不同?xgboost为什么快?xgboost如何支持并行? 看了陈天奇大神的文章和slides,略抒己见,没有面面俱到,

2017-09-03 15:29:33 211

转载 L0和L1:正则化

1、概念L0正则化的值是模型参数中非零参数的个数。L1正则化表示各个参数绝对值之和。L2正则化标识各个参数的平方的和的开方值。2、先讨论几个问题:1)实现参数的稀疏有什么好处吗?一个好处是可以简化模型,避免过拟合。因为一个模型中真正重要的参数可能并不多,如果考虑所有的参数起作用,那么可以对训练数据可以预测的很好,但是对测试数据就只能呵呵了

2017-09-02 22:46:04 1216

转载 hash冲突解决

虽然我们不希望发生冲突,但实际上发生冲突的可能性仍是存在的。当关键字值域远大于哈希表的长度,而且事先并不知道关键字的具体取值时。冲突就难免会发 生。另外,当关键字的实际取值大于哈希表的长度时,而且表中已装满了记录,如果插入一个新记录,不仅发生冲突,而且还会发生溢出。因此,处理冲突和溢出是 哈希技术中的两个重要问题。1、开放定址法     用开放定址法解决冲突的做法是:当冲突发生时,

2017-09-02 22:18:09 169

转载 PRC 和ROC

一、指标定义准确率:策略命中的所有相关订单/策略命中的所有订单 召回率:策略命中的所有相关订单/所有的相关订单(包括策略未被命中的) F1-score(F1-分数):2×准确率×召回率/(准确率+召回率),是模型准确率和召回率的一种加权平均,它的最大值是1,最小值是0。(详细介绍见下) ROC:ROC曲线的横坐标为false positive rate(FPR,假正率),纵坐标为true

2017-09-02 21:47:18 6338

转载 C++

常见C++面试题及基本知识点总结标签: C++面试题C++基本知识点2016-10-17 14:03 510人阅读 评论(0) 收藏 举报 分类:c++基础温习(6) 目录(?)[+]文章出处:http://www.cnblogs.com/LUO77/p/5771237.html1. 结构体和共同体的区别。

2017-08-30 22:53:34 247

转载 图像算法

图像基础知识:1. 常用的图像空间。2. 简述你熟悉的聚类算法并说明其优缺点。3. 请描述以下任一概念:SIFT/SURF  LDA/PCA4. 请说出使用过的分类器和实现原理。5. Random Forest的随机性表现在哪里。6. Graph-cut的基本原理和应用。7. GMM的基本原理和应用。8. 用具体算法举例说明监督学习和

2017-08-29 23:03:56 711

转载 SURF 与 SIFT

转载▼[转载]SURF 与 SIFT共同点:SIFT/SURF为了实现不同图像中相同场景的匹配,主要包括三个步骤:1、尺度空间的建立;2、特征点的提取;3、利用特征点周围邻域的信息生成特征描述子4、特征点匹配。      从博客上看到一片文章,http://blog.csdn.net/cy513/archi

2017-08-29 22:16:21 380

转载 图像处理 图像平滑、滤波、卷积

1.图像卷积(模板)(1).使用模板处理图像相关概念:          模板:矩阵方块,其数学含义是一种卷积运算。           卷积运算:可看作是加权求和的过程,使用到的图像区域中的每个像素分别于卷积核(权矩阵)的每个元素对应相 乘,所有乘积之和作为区域中心像素的新值。     卷积核:卷积时使用到的权用一个矩阵表示,该矩阵是一个权矩阵。     卷积

2017-08-29 18:01:46 1316

转载 SVM防止过拟合

过拟合(Overfitting)表现为在训练数据上模型的预测很准,在未知数据上预测很差。过拟合主要是因为训练数据中的异常点,这些点严重偏离正常位置。我们知道,决定SVM最优分类超平面的恰恰是那些占少数的支持向量,如果支持向量中碰巧存在异常点,那么我们傻傻地让SVM去拟合这样的数据,最后的超平面就不是最优的。如图1所示,深红色线表示我们希望训练得到的最优分类超平面,黑色虚线表示由于过拟合得到

2017-08-28 22:27:37 4782

转载 优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)

本文介绍常见的一阶数值优化算法,这些方法在现代神经网络框架(tensorflow, caffe, torch)中已经是标准配置。问题设系统参数为ω。对于样本i,其代价函数为Qi(ω)。在n个样本组成的训练集上,其整体代价函数为: Q(ω)=∑i=1nQi(ω)要求ω使得上式最小,由于没有闭式解,需要通过近似迭代逐步逼近。基础一阶优化GDG

2017-08-26 18:39:06 1696

转载 word2vec

简介Word2vec 是 Google 在 2013 年年中开源的一款将词表征为实数值向量的高效工具, 其利用深度学习的思想,可以通过训练,把对文本内容的处理简化为 K 维向量空间中的向量运算,而向量空间上的相似度可以用来表示文本语义上的相似度。Word2vec输出的词向量可以被用来做很多 NLP 相关的工作,比如聚类、找同义词、词性分析等等。如果换个思路, 把词当做特征,那么Word2v

2017-08-26 18:13:42 196

转载 LIBSVM和LIBLINEAR的优化

前面介绍了LIBSVM和LIBLINEAR的优化算法,下面简单总结一下不同算法的应用场景吧:所有线性问题都是用LIBLINEAR,而不要使用LIBSVM。LIBSVM中的不同算法,如C-SVM和nu-SVM在模型和求解上并没有本质的区别,只是做了一个参数的变换,所以选择自己习惯的就好。LIBLINEAR的优化算法主要分为两大类,即求解原问题(primal problem)和对偶

2017-08-20 22:05:49 649

转载 Deep Learning

目录:一、概述二、背景三、人脑视觉机理四、关于特征4.1、特征表示的粒度4.2、初级(浅层)特征表示4.3、结构性特征表示4.4、需要有多少个特征?五、Deep Learning的基本思想六、浅层学习(Shallow Learning)和深度学习(Deep Learning)七、Deep learn

2017-08-20 21:59:35 364

转载 SVM与LR的区别

在大大小小的面试过程中,多次被问及这个问题:“请说一下逻辑回归(LR)和支持向量机(SVM)之间的相同点和不同点”。第一次被问到这个问题的时候,含含糊糊地说了一些,大多不在点子上,后来被问得多了,慢慢也就理解得更清楚了,所以现在整理一下,希望对以后面试机器学习方向的同学有所帮助(至少可以瞎扯几句,而不至于哑口无言ha(*^-^*))。(1)为什么将LR和SVM放在一起来进行比较? 回答这个问题

2017-08-20 21:48:23 677

转载 Linux命令

介绍:1 开头程序必须以下面的行开始(必须方在文件的第一行):#!/bin/sh符号#!用来告诉系统它后面的参数是用来执行该文件的程序。在这个例子中我们使用/bin/sh来执行程序。当编写脚本完成时,如果要执行该脚本,还必须使其可执行。要使编写脚本可执行:编译 chmod +x filename 这样才能用./filename 来运行2 注释在进行shell编程

2017-07-30 21:13:14 110

转载 ImgNet Top-5

在看一些深度学习图像分类文献的时候,经常提到ImageNet Top-5错误率降到了15%。它是什么意思呢?top1就是你预测的label取最后概率向量里面最大的那一个作为预测结果,你的预测结果中概率最大的那个类必须是正确类别才算预测正确。而top5就是最后概率向量最大的前五名中出现了正确概率即为预测正确。ImageNet 项目ImageNe

2017-07-30 16:48:30 1033

转载 sudo

一、APT的使用(Ubuntu Linux软件包管理工具一)apt-cache search # ------(package 搜索包)apt-cache show #------(package 获取包的相关信息,如说明、大小、版本等)sudo apt-get install # ------(package 安装包)sudo apt-get install # -----(pa

2017-07-30 16:19:54 207

原创 Linux面试题

1. 假设定期维护和备份文件是你的日常工作任务之一。备份的文件以压缩的形式保存。现在你需要查看两个月前备份的一份log文件。那么在不解压的情况下如何才能查看这份文件的内容?答:使用zcat命令。 $ zcat f phpshe112.4.tar.gz2. 如何需要跟踪系统发生的事件?答:使用syslogd守护进程。syslogd在跟踪系统事件方面非常有用,并可以将其

2017-07-13 22:05:18 301

转载 Linux

显示目录和文件的命令   Ls:用于查看所有文件夹的命令。   Dir:用于显示指定文件夹和目录的命令   Tree: 以树状图列出目录内容   Du:显示目录或文件大小  修改目录,文件权限和属主及数组命令   Chmod:用于改变指定文件的权限命令。   Chown:用于改变文件拥有属性的命令。   Chgrp:用于改变文件群

2017-07-13 22:02:07 306

翻译 Linux命令大全——面试

1. finger:查询用户信息,也能查看默认的用户环境。2. ftp:标准的文件传输协议的用户接口,是在网络上传输文件最简单有效的方法。3. host:用于DNS查询。4. hostname:用于显示或设置系统的主机名。5. ifconfig:用于配置网卡接口。(可以使用down或up参数来禁用或启用某个网卡接口)6. mail:发送和接收邮件。7. netstat:显示

2017-07-13 21:38:59 204

原创 JVM内存泄露与内存溢出的区别

内存溢出 out of memory,是指程序在申请内存时,没有足够的内存空间供其使用,出现out of memory;比如申请了一个integer,但给它存了long才能存下的数,那就是内存溢出。内存泄露 memory leak,是指程序在申请内存后,无法释放已申请的内存空间,一次内存泄露危害可以忽略,但内存泄露堆积后果很严重,无论多少内存,迟早会被占光。总结:memory le

2017-07-13 21:36:29 969

转载 C++中指针与引用的区别

指针和引用在C++中很常用,但是对于它们之间的区别很多初学者都不是太熟悉,下面来谈谈他们2者之间的区别和用法。1.指针和引用的定义和性质区别:(1)指针:指针是一个变量,只不过这个变量存储的是一个地址,指向内存的一个存储单元;而引用跟原来的变量实质上是同一个东西,只不过是原变量的一个别名而已。如:int a=1;int *p=&a;int a=1;int &b=a;

2017-07-13 21:33:13 120

翻译 Java String.split()用法小结

在java.lang包中有String.split()方法,返回是一个数组我在应用中用到一些,给大家总结一下,仅供大家参考:1、如果用“.”作为分隔的话,必须是如下写法,String.split("\\."),这样才能正确的分隔开,不能用String.split(".");2、如果用“|”作为分隔的话,必须是如下写法,String.split("\\|"),这样才能正确的分

2017-05-03 16:19:00 159

转载 cuda并行运算

Cuda并行编程学习时候需注意的一些基本概念1、Cuda的编程风格:spmp(单程序多数据)的并行编程风格。2、在多GPU下,cudaMemcpy()不能用于GPU之间的数据复制3、cudaMemcpy()传输的数据类型有四种:(1)       主机-主机(2)       主机-设备(3)       设备-主机(4)       设备-

2017-03-27 21:35:35 626

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除