优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)

本文介绍常见的一阶数值优化算法,这些方法在现代神经网络框架(tensorflow, caffe, torch)中已经是标准配置。

问题

设系统参数为 ω 。对于样本 i ,其代价函数为 Qi(ω) 。在n个样本组成的训练集上,其整体代价函数为: 

Q(ω)=i=1nQi(ω)

要求 ω 使得上式最小,由于没有闭式解,需要通过近似迭代逐步逼近。

基础一阶优化

GD

GD(Gradient Descent)以 η 为学习率,在每次迭代中用一阶泰勒展开近似: 

ωt+1=ωt?η?Q(ω)

将求和与梯度互换。GD方法的增量来源于对所有样本同时求梯度之和: 

ωt+1=ωt?ηi=1n?Qi(ω)

ω 的维度为D,代价函数 Q 是个标量,减号后的梯度也是一个D维向量。

SGD

SGD(Stochastic Gradient Descent)在每次迭代中,顺次使用每个样本的梯度,更新参数:

for i=1 to n 

ωt+1=ωt?η?Qi(ω)

一种折衷的方法是,把m个样本组成一个mini-batch,使用mini-batch的总梯度更新参数:

for i=1 to n/m 

ωt+1=ωt?ηj=1m?Qij(ω)

其中 Qij(ω) 为第i个minibatch中第j个样本的代价。

为书写简便,以下说明中不再出现样本序号i。 ?Q(ω) 可以指一个样本、一个mini-batch或者全部样本的梯度只和。

更快的一阶优化

这些方法都以GD为基础,但收敛速度更快,换句话说 ?t 更小。 
关于收敛速度的意义,请参看这篇博客

ASGD

ASGD(Average Stochastic Gradient Descent)选择一个迭代的时间点(代数) t0 ,在这个时间点之前,和SGD一样: 

ωˉt=ωt

在这个时间点之后,使用 t0 到当前时刻 t 的平均值: 

ωˉt=1t?t0+1τ=t0tωτ

AdaGrad

AdaGrad1(Adaptive Gradient)方法对参数的每一维进行归一化,使用的分母是之前步骤中该维度的平方和: 

ωdt+1=ωdt?η1t?1τ=1[?Q(ωt)d]2???????????????Q(ωt)

相当于 为每一维参数设定了不同的学习率 :压制常常变化的参数,突出稀缺的更新。能够更有效地利用少量有意义样本。

AdaDelta

AdaDelta2(Adaptive Delta)和AdaGrad一样为每一维参数设定不同学习率,但是不用再设定基础学习率 η

首先维护一个期望D,描述之前迭代中的参数变化情况,同样是个D维向量: 

Dt=γDt?1+(1?γ)Δω2t

另一个期望G,描述之前迭代中的梯度的平方: 

Gt=γGt?1+(1?γ)?Q(ω)2t

使用D和G的比值作为权重,分别归一化每一维参数: 

ωdt+1=ωdt?DdtGdt+1?Q(ω)

减号后的归一化参数决定了:单位梯度变化对应多少参数变化。

Adam

Adam3(Adaptive Moment Estimation)的思路和AdaGrad相似,都使用梯度平方根归一化学习率。

注意:为书写简便,后续的矩阵相乘相除都逐元素进行,更新也对参数每一维单独进行。

维护一个一阶momentum,等价于梯度: 

mt=α?mt?1+(1?α)??Q(ω)

另一个二阶momentum,等价于梯度平方: 

vt=β?vt?1+(1?β)??Q(ω)2

由于 m,v 都初始化为0,使用t次幂让其在头几次迭代中更大一些: 

m^t=mt1?αt,v^t=vt1?βt

使用梯度平方 v 归一化学习率,更新幅度为梯度 m

ωt+1=ωt?η1v^t???m^t

Rprop

RProp4(Resilient Propagation)比较本次梯度 ?Q(ω)dt+1 和上次梯度 ?Q(ω)dt 符号变化来为参数d的变化加权。

如果两次梯度符号相反,则抑制参数变化( η?<1 ): 

ωdt+1=ωdt?η???Q(ω)

如果两次符号相同,则增强参数变化( η+>1 ): 

ωdt+1=ωdt?η+??Q(ω)

RMSprop

RMSprop5(Root Mean Square Propagation)类似于简化版的AdaDelta,但是是独立发展而来的。

维护期望G,描述之前迭代中的梯度的平方: 

Gt=γGt?1+(1?γ)?Q(ω)2t

用G修正学习率: 

ωdt+1=ωdt?ηGdt+1?Q(ω)

NAG

NAG6(Nesterov’s Accelerated Gradient),发明者是毛国数学家Yurii Nesterov。

参数变化由 γ 控制: 

mt=γ?mt?1+η??Q(ω?γ?mt?1)

导数的计算点不再是当前参数 ω ,而是从当前参数根据前次变化前进一小步。

mt 更新参数: 

ωt+1=ωt?mt

总结

提速可以归纳为以下几个方面: 
- 使用momentum来保持前进方向(velocity); 
- 为每一维参数设定不同的学习率:在梯度连续性强的方向上加速前进; 
- 用历史迭代的平均值归一化学习率:突出稀有的梯度;

辨:其他优化方法

共轭梯度法(Conjugate Gradient)也是一阶方法,针对特殊形式的代价函数: 

Q(ω)=12ωTAω?ωTb

常见的各种牛顿法L-BFGS核心都是二阶优化方法,利用了代价函数的Hessian矩阵: 

xt+1=xt?η?H[Q(ω)]?1?Q(ω)

换句话说,牛顿法用线性函数拟合代价函数的导数,而不是代价函数本身。

具体的一阶优化方法:

BGD

即batch gradient descent. 在训练中,每一步迭代都使用训练集的所有内容. 也就是说,利用现有参数对训练集中的每一个输入生成一个估计输出 yi^ ,然后跟实际输出 yi 比较,统计所有误差,求平均以后得到平均误差,以此来作为更新参数的依据.

具体实现: 
需要:学习速率  ϵ , 初始参数  θ  
每步迭代过程: 
1. 提取训练集中的所有内容 {x1,,xn} ,以及相关的输出 yi  
2. 计算梯度和误差并更新参数: 

g^+1nθiL(f(xi;θ),yi)θθϵg^

优点: 
由于每一步都利用了训练集中的所有数据,因此当损失函数达到最小值以后,能够保证此时计算出的梯度为0,换句话说,就是能够收敛.因此,使用BGD时不需要逐渐减小学习速率 ϵk

缺点: 
由于每一步都要使用所有数据,因此随着数据集的增大,运行速度会越来越慢.


SGD

SGD全名 stochastic gradient descent, 即随机梯度下降。不过这里的SGD其实跟MBGD(minibatch gradient descent)是一个意思,即随机抽取一批样本,以此为根据来更新参数.

具体实现: 
需要:学习速率  ϵ , 初始参数  θ  
每步迭代过程: 
1. 从训练集中的随机抽取一批容量为m的样本 {x1,,xm} ,以及相关的输出 yi  
2. 计算梯度和误差并更新参数: 

g^+1mθiL(f(xi;θ),yi)θθϵg^

优点: 
训练速度快,对于很大的数据集,也能够以较快的速度收敛.

缺点: 
由于是抽取,因此不可避免的,得到的梯度肯定有误差.因此学习速率需要逐渐减小.否则模型无法收敛 
因为误差,所以每一次迭代的梯度受抽样的影响比较大,也就是说梯度含有比较大的噪声,不能很好的反映真实梯度.

学习速率该如何调整: 
那么这样一来, ϵ 如何衰减就成了问题.如果要保证SGD收敛,应该满足如下两个要求: 

k=1ϵk=k=1ϵ2k<

而在实际操作中,一般是进行线性衰减: 
ϵk=(1α)ϵ0+αϵτα=kτ

其中 ϵ0 是初始学习率,  ϵτ 是最后一次迭代的学习率.  τ 自然代表迭代次数.一般来说, ϵτ  设为 ϵ0 的1%比较合适.而 τ 一般设为让训练集中的每个数据都输入模型上百次比较合适 .那么初始学习率 ϵ0 怎么设置呢?书上说,你 先用固定的学习速率迭代100次,找出效果最好的学习速率,然后 ϵ0 设为比它大一点就可以了.


Momentum

上面的SGD有个问题,就是每次迭代计算的梯度含有比较大的噪音. 而Momentum方法可以比较好的缓解这个问题,尤其是在面对小而连续的梯度但是含有很多噪声的时候,可以很好的加速学习.Momentum借用了物理中的动量概念,即前几次的梯度也会参与运算.为了表示动量,引入了一个新的变量v(velocity).v是之前的梯度的累加,但是每回合都有一定的衰减.

具体实现: 
需要:学习速率  ϵ , 初始参数  θ , 初始速率v, 动量衰减参数 α  
每步迭代过程: 
1. 从训练集中的随机抽取一批容量为m的样本 {x1,,xm} ,以及相关的输出 yi  
2. 计算梯度和误差,并更新速度v和参数 θ

g^+1mθiL(f(xi;θ),yi)vαvϵg^θθ+v

其中参数 α 表示每回合速率v的衰减程度.同时也可以推断得到,如果每次迭代得到的梯度都是g,那么最后得到的v的稳定值为 

ϵg1α

也就是说,Momentum最好情况下能够将学习速率加速 11α 倍.一般 α 的取值有0.5,0.9,0.99这几种.当然,也可以让 α 的值随着时间而变化,一开始小点,后来再加大.不过这样一来,又会引进新的参数.

特点: 
前后梯度方向一致时,能够加速学习 
前后梯度方向不一致时,能够抑制震荡


Nesterov Momentum

这是对之前的Momentum的一种改进,大概思路就是,先对参数进行估计,然后使用估计后的参数来计算误差

具体实现: 
需要:学习速率  ϵ , 初始参数  θ , 初始速率v, 动量衰减参数 α  
每步迭代过程: 
1. 从训练集中的随机抽取一批容量为m的样本 {x1,,xm} ,以及相关的输出 yi  
2. 计算梯度和误差,并更新速度v和参数 θ

g^+1mθiL(f(xi;θ+αv),yi)vαvϵg^θθ+v

注意在估算 g^ 的时候,参数变成了 θ+αv 而不是之前的 θ


AdaGrad

AdaGrad可以自动变更学习速率,只是需要设定一个全局的学习速率 ϵ ,但是这并非是实际学习速率,实际的速率是与以往参数的模之和的开方成反比的.也许说起来有点绕口,不过用公式来表示就直白的多: 

ϵn=ϵδ+n1i=1gigi

其中 δ 是一个很小的常亮,大概在 107 ,防止出现除以0的情况.

具体实现: 
需要:全局学习速率  ϵ , 初始参数  θ , 数值稳定量 δ  
中间变量: 梯度累计量r(初始化为0) 
每步迭代过程: 
1. 从训练集中的随机抽取一批容量为m的样本 {x1,,xm} ,以及相关的输出 yi  
2. 计算梯度和误差,更新r,再根据r和梯度计算参数更新量 

g^+1mθiL(f(xi;θ),yi)rr+g^g^θ=ϵδ+rg^θθ+θ

优点: 
能够实现学习率的自动更改。如果这次梯度大,那么学习速率衰减的就快一些;如果这次梯度小,那么学习速率衰减的就满一些。

缺点: 
任然要设置一个变量 ϵ  
经验表明,在普通算法中也许效果不错,但在深度学习中,深度过深时会造成训练提前结束。


RMSProp

RMSProp通过引入一个衰减系数,让r每回合都衰减一定比例,类似于Momentum中的做法。

具体实现: 
需要:全局学习速率  ϵ , 初始参数  θ , 数值稳定量 δ ,衰减速率 ρ  
中间变量: 梯度累计量r(初始化为0) 
每步迭代过程: 
1. 从训练集中的随机抽取一批容量为m的样本 {x1,,xm} ,以及相关的输出 yi  
2. 计算梯度和误差,更新r,再根据r和梯度计算参数更新量 

g^+1mθiL(f(xi;θ),yi)rρr+(1ρ)g^g^θ=ϵδ+rg^θθ+θ

优点: 
相比于AdaGrad,这种方法很好的解决了深度学习中过早结束的问题 
适合处理非平稳目标,对于RNN效果很好

缺点: 
又引入了新的超参,衰减系数 ρ  
依然依赖于全局学习速率


RMSProp with Nesterov Momentum

当然,也有将RMSProp和Nesterov Momentum结合起来的

具体实现: 
需要:全局学习速率  ϵ , 初始参数  θ , 初始速率v,动量衰减系数 α , 梯度累计量衰减速率 ρ  
中间变量: 梯度累计量r(初始化为0) 
每步迭代过程: 
1. 从训练集中的随机抽取一批容量为m的样本 {x1,,xm} ,以及相关的输出 yi  
2. 计算梯度和误差,更新r,再根据r和梯度计算参数更新量 

θ~θ+αvg^+1mθ~iL(f(xi;θ~),yi)rρr+(1ρ)g^g^vαvϵrg^θθ+v


Adam

Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。

具体实现: 
需要:步进值  ϵ , 初始参数  θ , 数值稳定量 δ ,一阶动量衰减系数 ρ1 , 二阶动量衰减系数 ρ2  
其中几个取值一般为: δ=108,ρ1=0.9,ρ2=0.999  
中间变量:一阶动量s,二阶动量r,都初始化为0 
每步迭代过程: 
1. 从训练集中的随机抽取一批容量为m的样本 {x1,,xm} ,以及相关的输出 yi  
2. 计算梯度和误差,更新r和s,再根据r和s以及梯度计算参数更新量 

g+1mθiL(f(xi;θ),yi)sρ1s+(1ρ1)grρ2r+(1ρ2)ggs^s1ρ1r^r1ρ2θ=ϵs^r^+δθθ+

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值