低阶有限群的伽罗瓦表示

本文探讨了伽罗瓦反问题,即有限群是否总能与有理系数多项式的伽罗瓦群同构。通过一系列示例展示了如何使用数学软件GAP来分析不同多项式的伽罗瓦群结构,包括C4、C2 x C2和S3等,同时提出了关于分圆扩张的8阶循环群的猜想,并提供了部分验证。
摘要由CSDN通过智能技术生成

伽罗瓦反问题Galois inverse problem
问题:是否任意一个有限群都同构于一个有理系数多项式的伽罗瓦群?
http://pari.math.u-bordeaux.fr/galpol/4/
gap> n:=4;;for i in [n..100] do Ui:=Units(Integers mod i);;gid:=IdGroup(Ui);if n=gid[1] then Print(i,":",gid,"\n");fi;od;
5:[ 4, 1 ]
8:[ 4, 2 ]
10:[ 4, 1 ]
12:[ 4, 2 ]
gap> x:=Indeterminate(Rationals);;poly:=x^4-5*x^2+5;;g:=TransitiveGroup(Degree(poly),GaloisType(poly));;StructureDescription(g);IdGroup(g);
"C4"
[ 4, 1 ]
gap> x:=Indeterminate(GaussianRationals);;poly:=x^4+x^3+x^2+x+1;;g:=TransitiveGroup(Degree(poly),GaloisType(poly));;StructureDescription(g);IdGroup(g);
"C4"
[ 4, 1 ]
gap> g:=GaloisGroup(CyclotomicField(5));;StructureDescription(g);IdGroup(g);                             
"C4"
[ 4, 1 ]
gap> g:=GaloisGroup(CyclotomicField(10));;StructureDescription(g);IdGroup(g);
"C4"
[ 4, 1 ]
gap> x:=Indeterminate(Rationals);;poly:=x^4-4*x^2+1;;g:=TransitiveGroup(Degree(poly),GaloisType(poly));;StructureDescription(g);IdGroup(g);
"C2 x C2"
[ 4, 2 ]
gap> x:=Indeterm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值