伽罗瓦反问题Galois inverse problem
问题:是否任意一个有限群都同构于一个有理系数多项式的伽罗瓦群?
http://pari.math.u-bordeaux.fr/galpol/4/
gap> n:=4;;for i in [n..100] do Ui:=Units(Integers mod i);;gid:=IdGroup(Ui);if n=gid[1] then Print(i,":",gid,"\n");fi;od;
5:[ 4, 1 ]
8:[ 4, 2 ]
10:[ 4, 1 ]
12:[ 4, 2 ]
gap> x:=Indeterminate(Rationals);;poly:=x^4-5*x^2+5;;g:=TransitiveGroup(Degree(poly),GaloisType(poly));;StructureDescription(g);IdGroup(g);
"C4"
[ 4, 1 ]
gap> x:=Indeterminate(GaussianRationals);;poly:=x^4+x^3+x^2+x+1;;g:=TransitiveGroup(Degree(poly),GaloisType(poly));;StructureDescription(g);IdGroup(g);
"C4"
[ 4, 1 ]
gap> g:=GaloisGroup(CyclotomicField(5));;StructureDescription(g);IdGroup(g);
"C4"
[ 4, 1 ]
gap> g:=GaloisGroup(CyclotomicField(10));;StructureDescription(g);IdGroup(g);
"C4"
[ 4, 1 ]
gap> x:=Indeterminate(Rationals);;poly:=x^4-4*x^2+1;;g:=TransitiveGroup(Degree(poly),GaloisType(poly));;StructureDescription(g);IdGroup(g);
"C2 x C2"
[ 4, 2 ]
gap> x:=Indeterm
低阶有限群的伽罗瓦表示
最新推荐文章于 2021-08-13 15:33:58 发布
本文探讨了伽罗瓦反问题,即有限群是否总能与有理系数多项式的伽罗瓦群同构。通过一系列示例展示了如何使用数学软件GAP来分析不同多项式的伽罗瓦群结构,包括C4、C2 x C2和S3等,同时提出了关于分圆扩张的8阶循环群的猜想,并提供了部分验证。
摘要由CSDN通过智能技术生成