sina日志
华仔Ivan
http://www.hanshouqing.com
展开
-
低阶有限群的伽罗瓦表示
伽罗瓦反问题Galois inverse problem问题:是否任意一个有限群都同构于一个有理系数多项式的伽罗瓦群?http://pari.math.u-bordeaux.fr/galpol/4/gap> n:=4;;for i in [n..100] do Ui:=Units(Integers mod i);;gid:=IdGroup(Ui);if n=gid[1] then Pri...原创 2020-02-29 09:56:46 · 774 阅读 · 0 评论 -
李德乐:低阶群的特征标表
http://www.doc88.com/p-536463154451.html摘要:本文主要讨论了通过群的同构分类的观点系统给出了低阶(31阶以下)群的特征标表。为了解决这一问题,本文引用一个主要定理(文献1),通过这个定理解决了24阶群的所有同构分类情况。本文具体分析了群的结构。第二章,我们证明一些有关群同构理论和特征标的理论。第三章,我们主要探讨低阶群的同构关系。第四章,我们利用低阶群的...原创 2020-02-29 09:55:23 · 3486 阅读 · 0 评论 -
2520阶群、20160阶群、有限单群的阶
GAP4中调用NumberSmallGroups(2160);NumberSmallGroups(20160);NumberSmallGroups(10080);NumberSmallGroups(6720);NumberSmallGroups(5040);NumberSmallGroups(4032);NumberSmallGroups(3360);NumberSmallGroups(2880)...原创 2020-02-29 09:53:34 · 1360 阅读 · 0 评论 -
174种1500阶群
gap> NumberSmallGroups(1500);174gap> L:=Factors(1500);[ 2, 2, 3, 5, 5, 5 ]gap> G:=AbelianGroup(L);;IdGroup(G);AbelianInvariants(G);[ 1500, 174 ][ 2, 2, 3, 5, 5, 5 ]gap> L1:=[L[1]*L[...原创 2020-02-29 09:52:09 · 324 阅读 · 0 评论 -
153种2744阶群
GAP4中调用NumberSmallGroups(2744);命令会出错。陈松良的《2744阶群的构造》一文证明G2744共有153种互不同构的类型,并获得了G的全部构造:(1)当Sylow子群都正规时,G恰有25个彼此不同构的类型;(2)当Sylow 2-子群正规但Sylow 7-子群不正规时,G恰有8个彼此不同构的类型;(3)当Sylow 2-子群不正规但Sylow 7-子群正规时,G恰有1...原创 2020-02-29 09:50:27 · 754 阅读 · 0 评论 -
41种420阶群、1213种480阶群
gap> NumberSmallGroups(420);41gap> for n in [1..41] do G:=SmallGroup(420,n);idn:=IdGroup(G);Print(idn);Print(":");L:=List(Elements(G),Order);;M:=[1,2,3,4,5,6,7,10,12,14,15,20,21,28,30,35,42,60...原创 2020-02-29 09:42:39 · 701 阅读 · 1 评论 -
162种360阶群
gap> NumberSmallGroups(360);162gap> for n in [1..162] do G:=SmallGroup(360,n);idn:=IdGroup(G);Print(idn);Print(":");L:=List(Elements(G),Order);;M:=[1,2,3,4,5,6,8,9,10,12,15,18,20,24,30,36,40,4...原创 2020-02-29 09:41:05 · 465 阅读 · 0 评论 -
49种300阶群
gap> NumberSmallGroups(300);49gap> for n in [1..49] do G:=SmallGroup(300,n);idn:=IdGroup(G);Print(idn);Print(":");L:=List(Elements(G),Order);;M:=[1,2,3,4,5,6,10,12,15,20,25,30,50,60,75,100,150...原创 2020-02-29 09:39:47 · 342 阅读 · 0 评论 -
208种240阶群
gap> NumberSmallGroups(240);208gap> for n in [1..208] do G:=SmallGroup(240,n);idn:=IdGroup(G);Print(idn);Print(":");L:=List(Elements(G),Order);;M:=[1,2,3,4,5,6,8,10,12,15,16,20,24,30,40,48,60,...原创 2020-02-25 15:08:53 · 291 阅读 · 0 评论 -
37种180阶群
gap> NumberSmallGroups(180);37gap> for n in [1..37] do G:=SmallGroup(180,n);idn:=IdGroup(G);Print(idn);Print(":");L:=List(Elements(G),Order);;M:=[1,2,3,4,5,6,9,10,12,15,18,20,30,36,45,60,90,18...原创 2020-02-25 15:07:23 · 798 阅读 · 0 评论 -
47种120阶群
gap> NumberSmallGroups(120);47gap> for n in [1..47] do G:=SmallGroup(120,n);idn:=IdGroup(G);Print(idn);Print(":");L:=List(Elements(G),Order);;M:=[1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120];;fo...原创 2020-02-25 15:05:52 · 775 阅读 · 0 评论 -
177种216阶群
陈松良的《关于216阶群的完全分类》一文证明G216共有177种互不同构的类型,并获得了G的全部构造。gap> NumberSmallGroups(216);177gap> for n in [1..177] do G:=SmallGroup(216,n);idn:=IdGroup(G);Print(idn);Print(":");L:=List(Elements(G),Orde...原创 2020-02-25 15:02:42 · 694 阅读 · 0 评论 -
57种168阶群
在郭继东等人的《单群PSL(2,7)的一个新刻画》一文中给出单群PSL(2,7)的一个新刻画,主要结果是下述定理:如果有限群G的同阶的元素的个数组成的集合是{1,21,56,42,48},则G≌PSL(2,7)。gap> NumberSmallGroups(168);IdGroup(PSL(2,7));IdGroup(SL(3,2));57[ 168, 42 ][ 168, 42 ]gap&...原创 2020-02-25 15:00:58 · 791 阅读 · 0 评论 -
45种108阶群
在陈松良等人的《关于108阶群的完全分类》一文中证明了G108共有45=10+7+28+0种互不同构的类型.若Sylow子群都正规,则G有10种;若Sylow 2-子群正规而Sylow 3-子群不正规,则G有7种;若Sylow 3-子群正规而Sylow 2-子群不正规,则G有28种;若Sylow子群都不正规,则G不存在。20151029:4种类型所包含的GAP4编号:Sylow子群都正规(10...原创 2020-02-25 14:58:54 · 1192 阅读 · 0 评论 -
50种72阶群
在陈松良等人的《关于72阶群的同构分类》一文中证明了G72共有50=10+4+32+4种不同构的类型:若Sylow子群都正规,则G72有10种;若Sylow 2-子群正规而Sylow 3-子群不正规,则G72有4种;若Sylow 3-子群正规而Sylow 2-子群不正规,则G72有32种;若Sylow子群都不正规,则G72有4种。20151101猜想:有理数域上的分圆扩张的伽罗瓦群不可能是C24...原创 2020-02-25 14:56:08 · 1907 阅读 · 0 评论 -
267种64阶群
gap> NumberSmallGroups(64);267gap> for n in [1..267] do G:=SmallGroup(64,n);idn:=IdGroup(G);Print(idn);Print(":");L:=List(Elements(G),Order);;M:=[1,2,4,8,16,32,64];;for i in M do Print(Size(Po...原创 2020-02-25 14:54:15 · 611 阅读 · 0 评论 -
51种32阶群
20151017补充:定理:51种32阶群与它们的群元阶的分布、特征标表、换位子群、自同构群、正规子群的个数一一对应[ 1, 2, 4, 8,16,32]gap> NumberSmallGroups(32);5151个32阶群Group GAP4(32,1) [C32]1,1,2,4,8,16,换位子群:[ 1, 1 ]自同构群:[ 16, 5 ]正规子群个数:6Group...原创 2020-02-25 14:51:22 · 1636 阅读 · 0 评论 -
数学及其历史读书摘要(201305)
chap7解析几何7.3代数曲线在这段话中,笛卡尔定义了我们现在所谓的代数曲线。笛卡尔拒绝超越方程是短视之举,因微积分很快就提供了研究它们的级数;但无论如何,集中关注代数曲线是有益的。特别地,次数的概念有利于反应曲线的复杂性。一次曲线可能是最简单的,即直线;二次曲线次简单,它们是圆锥曲线。在三次曲线的情形,我们看到了新的现象:拐折、二重点和尖点。众所周知,拐点和尖点分别出现在y=x^3和y^...原创 2020-02-25 14:46:48 · 377 阅读 · 0 评论