直接从凯莱表构造一个有限环,输出Id和环结构不变量N0n0bAbOn1n2n4n5n6n7n8S1N2

D:\MathTool\gaptool>IdRing R8_10.txt
R8_10:N0n0bAbOn1n2n4n5n6n7n8S1N2=[1,3,4,0],4,0,0,8,1,5,7,48,7,2,[1,3,4,0],[[4,2,8],[4,4,8]]

D:\MathTool\gaptool>IdRing R8_11.txt
R8_11:N0n0bAbOn1n2n4n5n6n7n8S1N2=[1,3,4,0],4,1,0,8,1,7,7,40,7,8,[1,3,4,0],[[2,4,8],[4,2,8],[4,4,8]]

D:\MathTool\gaptool>FiniteRing
R2_1:N0n0bAbOn1n2n4n5n6n7n8S1N2=[1,1],2,1,0,2,1,1,1,4,1,2,[1,1],[]
R2_2:N0n0bAbOn1n2n4n5n6n7n8S1N2=[1,1],2,1,1,1,2,0,0,3,0,2,[1,1],[[2,2,1]]
R3_1:N0n0bAbOn1n2n4n5n6n7n8S1N2=[1,2],3,1,0,3,1,2,2,9,2,3,[1,2],[]
R3_2:N0n0bAbOn1n2n4n5n6n7n8S1N2=[1,2],3,1,1,1,2,0,0,5,0,3,[1,2],[[3,3,4]]
R6_1:N0n0bAbOn1n2n4n5n6n7n8S1N2=[1,1,2,2],6,1,0,6,1,5,5,36,5,6,[1,1,2,2],[]
R6_2:N0n0bAbOn1n2n4n5n6n7n8S1N2=[1,1,2,2],6,1,0,6,2,1,1,20,5,6,[1,1,2,2],[[3,3,4],[3,6,4],[6,3,4],[6,6,4]]
R6_2:N0n0bAbOn1n2n4n5n6n7n8S1N2=[1,1,2,2],6,1,0,6,2,1,1,20,5,6,[1,1,2,2],[[3,3,4],[3,6,4],[6,3,4],[6,6,4]]
R6_4:N0n0bAbOn1n2n4n5n6n7n8S1N2=[1,1,2,2],6,1,1,4,4,0,0,15,3,6,[1,1,2,2],[[2,2,1],[2,6,2],[3,3,4],[3,6,4],[6,2,2],[6,3,4],[6,6,4]]
R8_2:N0n0bAbOn1n2n4n5n6n7n8S1N2=[1,1,2,4],8,1,0,8,1,3,3,32,7,8,[1,1,2,4],[[4,8,8],[8,4,8],[8,8,16]]
R8_3:N0n0bAbOn1n2n4n5n6n7n8S1N2=[1,1,2,4],8,1,1,4,2,1,3,20,3,8,[1,1,2,4],[[2,8,4],[4,4,4],[4,8,8],[8,2,4],[8,4,8],[8,8,16]]
R8_4:N0n0bAbOn1n2n4n5n6n7n8S1N2=[1,1,2,4],8,1,0,8,1,3,7,48,7,8,[1,1,2,4],[[8,8,16]]
R8_14:N0n0bAbOn1n2n4n5n6n7n8S1N2=[1,3,4,0],4,1,1,6,4,1,1,24,5,8,[1,2,5,0],[[2,2,8],[2,4,10],[4,2,10],[4,4,12]]
R8_45:N0n0bAbOn1n2n4n5n6n7n8S1N2=[1,7,0,0],2,1,1,4,2,3,3,24,3,8,[1,4,3,0],[[2,2,40]]
R8_45:N0n0bAbOn1n2n4n5n6n7n8S1N2=[1,7,0,0],2,1,1,4,2,3,3,24,3,8,[1,4,3,0],[[2,2,40]]
R8_49:N0n0bAbOn1n2n4n5n6n7n8S1N2=[1,7,0,0],2,0,1,6,6,1,1,26,5,2,[1,6,1,0],[[2,2,38]]
R8_51:N0n0bAbOn1n2n4n5n6n7n8S1N2=[1,7,0,0],2,1,1,5,4,0,0,21,4,8,[1,3,2,2],[[2,2,43]]
R8_52:N0n0bAbOn1n2n4n5n6n7n8S1N2=[1,7,0,0],2,1,1,1,2,0,0,15,0,8,[1,1,0,6],[[2,2,49]]

#include"IRing.h"

int g_M2Add[2][2]={
     {0,1},
     {1,0}
};

int g_M2Mul[2][2]={
     {0,0},
     {0,0}
};

int g_F2Add[2][2]={
     {0,1},
     {1,0}
};
int g_F2Mul[2][2]={
     {0,0},
     {0,1}
};

int g_M3Add[3][3]={
     {0,1,2},
     {1,2,0},
     {2,0,1}
};
int g_M3Mul[3][3]={
     {0,0,0},
     {0,0,0},
     {0,0,0}
};

int g_F3Add[3][3]={
     {0,1,2},
     {1,2,0},
     {2,0,1}
};

int g_F3Mul[3][3]={
     {0,0,0},
     {0,1,2},
     {0,2,1}
};

int g_M3M2_M6Add[6][6]={
     {0,1,2,3,4,5},
     {1,2,3,4,5,0},
     {2,3,4,5,0,1},
     {3,4,5,0,1,2},
     {4,5,0,1,2,3},
     {5,0,1,2,3,4}
}; 

int g_M3M2_M6Mul[6][6]={
     {0,0,0,0,0,0},
     {0,0,0,0,0,0},
     {0,0,0,0,0,0},
     {0,0,0,0,0,0},
     {0,0,0,0,0,0},
     {0,0,0,0,0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值